org.apache.spark.mllib.optimization

GradientDescent

class GradientDescent extends Optimizer with Logging

Class used to solve an optimization problem using Gradient Descent.

Linear Supertypes
Logging, Optimizer, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GradientDescent
  2. Logging
  3. Optimizer
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  15. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  16. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  29. def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector

    :: DeveloperApi :: Runs gradient descent on the given training data.

    :: DeveloperApi :: Runs gradient descent on the given training data.

    data

    training data

    initialWeights

    initial weights

    returns

    solution vector

    Definition Classes
    GradientDescentOptimizer
    Annotations
    @DeveloperApi()
  30. def setGradient(gradient: Gradient): GradientDescent.this.type

    Set the gradient function (of the loss function of one single data example) to be used for SGD.

  31. def setMiniBatchFraction(fraction: Double): GradientDescent.this.type

    :: Experimental :: Set fraction of data to be used for each SGD iteration.

    :: Experimental :: Set fraction of data to be used for each SGD iteration. Default 1.0 (corresponding to deterministic/classical gradient descent)

    Annotations
    @Experimental()
  32. def setNumIterations(iters: Int): GradientDescent.this.type

    Set the number of iterations for SGD.

    Set the number of iterations for SGD. Default 100.

  33. def setRegParam(regParam: Double): GradientDescent.this.type

    Set the regularization parameter.

    Set the regularization parameter. Default 0.0.

  34. def setStepSize(step: Double): GradientDescent.this.type

    Set the initial step size of SGD for the first step.

    Set the initial step size of SGD for the first step. Default 1.0. In subsequent steps, the step size will decrease with stepSize/sqrt(t)

  35. def setUpdater(updater: Updater): GradientDescent.this.type

    Set the updater function to actually perform a gradient step in a given direction.

    Set the updater function to actually perform a gradient step in a given direction. The updater is responsible to perform the update from the regularization term as well, and therefore determines what kind or regularization is used, if any.

  36. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  37. def toString(): String

    Definition Classes
    AnyRef → Any
  38. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from Optimizer

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped