org.apache.spark.mllib.regression

GeneralizedLinearAlgorithm

abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] extends Logging with Serializable

:: DeveloperApi :: GeneralizedLinearAlgorithm implements methods to train a Generalized Linear Model (GLM). This class should be extended with an Optimizer to create a new GLM.

Annotations
@DeveloperApi()
Linear Supertypes
Serializable, Serializable, Logging, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GeneralizedLinearAlgorithm
  2. Serializable
  3. Serializable
  4. Logging
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GeneralizedLinearAlgorithm()

Abstract Value Members

  1. abstract def createModel(weights: Vector, intercept: Double): M

    Create a model given the weights and intercept

    Create a model given the weights and intercept

    Attributes
    protected
  2. abstract def optimizer: Optimizer

    The optimizer to solve the problem.

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. var addIntercept: Boolean

    Whether to add intercept (default: false).

    Whether to add intercept (default: false).

    Attributes
    protected
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. def isTraceEnabled(): Boolean

    Attributes
    protected
    Definition Classes
    Logging
  16. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logName: String

    Attributes
    protected
    Definition Classes
    Logging
  24. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  28. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  29. final def notify(): Unit

    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  31. def run(input: RDD[LabeledPoint], initialWeights: Vector): M

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided.

  32. def run(input: RDD[LabeledPoint]): M

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.

  33. def setIntercept(addIntercept: Boolean): GeneralizedLinearAlgorithm.this.type

    Set if the algorithm should add an intercept.

    Set if the algorithm should add an intercept. Default false. We set the default to false because adding the intercept will cause memory allocation.

  34. def setValidateData(validateData: Boolean): GeneralizedLinearAlgorithm.this.type

    Set if the algorithm should validate data before training.

    Set if the algorithm should validate data before training. Default true.

  35. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  36. def toString(): String

    Definition Classes
    AnyRef → Any
  37. var validateData: Boolean

    Attributes
    protected
  38. val validators: Seq[(RDD[LabeledPoint]) ⇒ Boolean]

    Attributes
    protected
  39. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  41. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped