Parameters for the tree algorithm. We support regression and binary classification for boosting. Impurity setting will be ignored.
Loss function used for minimization during gradient boosting.
Number of iterations of boosting. In other words, the number of weak hypotheses used in the final model.
Learning rate for shrinking the contribution of each estimator. The learning rate should be between in the interval (0, 1]
Learning rate for shrinking the contribution of each estimator.
Learning rate for shrinking the contribution of each estimator. The learning rate should be between in the interval (0, 1]
Loss function used for minimization during gradient boosting.
Number of iterations of boosting.
Number of iterations of boosting. In other words, the number of weak hypotheses used in the final model.
Parameters for the tree algorithm.
Parameters for the tree algorithm. We support regression and binary classification for boosting. Impurity setting will be ignored.
:: Experimental :: Configuration options for org.apache.spark.mllib.tree.GradientBoostedTrees.
Parameters for the tree algorithm. We support regression and binary classification for boosting. Impurity setting will be ignored.
Loss function used for minimization during gradient boosting.
Number of iterations of boosting. In other words, the number of weak hypotheses used in the final model.
Learning rate for shrinking the contribution of each estimator. The learning rate should be between in the interval (0, 1]