org.apache.spark.mllib.tree.loss

LogLoss

object LogLoss extends Loss

:: DeveloperApi :: Class for log loss calculation (for classification). This uses twice the binomial negative log likelihood, called "deviance" in Friedman (1999).

The log loss is defined as: 2 log(1 + exp(-2 y F(x))) where y is a label in {-1, 1} and F(x) is the model prediction for features x.

Annotations
@DeveloperApi()
Linear Supertypes
Loss, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LogLoss
  2. Loss
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def computeError(model: TreeEnsembleModel, data: RDD[LabeledPoint]): Double

    Method to calculate loss of the base learner for the gradient boosting calculation.

    Method to calculate loss of the base learner for the gradient boosting calculation. Note: This method is not used by the gradient boosting algorithm but is useful for debugging purposes.

    model

    Ensemble model

    data

    Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint.

    returns

    Mean log loss of model on data

    Definition Classes
    LogLossLoss
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def gradient(model: TreeEnsembleModel, point: LabeledPoint): Double

    Method to calculate the loss gradients for the gradient boosting calculation for binary classification The gradient with respect to F(x) is: - 4 y / (1 + exp(2 y F(x)))

    Method to calculate the loss gradients for the gradient boosting calculation for binary classification The gradient with respect to F(x) is: - 4 y / (1 + exp(2 y F(x)))

    model

    Ensemble model

    point

    Instance of the training dataset

    returns

    Loss gradient

    Definition Classes
    LogLossLoss
  14. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  20. def toString(): String

    Definition Classes
    AnyRef → Any
  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Loss

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped