RandomRDDs#exponentialJavaRDD with the default number of partitions and the default seed.
RandomRDDs#exponentialJavaRDD with the default seed.
Java-friendly version of RandomRDDs#exponentialRDD.
RandomRDDs#exponentialJavaVectorRDD with the default number of partitions and the default seed.
RandomRDDs#exponentialJavaVectorRDD with the default seed.
Java-friendly version of RandomRDDs#exponentialVectorRDD.
Generates an RDD comprised of i.i.d.
samples from the exponential distribution with
the input mean.
Generates an RDD comprised of i.i.d.
samples from the exponential distribution with
the input mean.
SparkContext used to create the RDD.
Mean, or 1 / lambda, for the exponential distribution.
Size of the RDD.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Double] comprised of i.i.d.
samples ~ Pois(mean).
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
exponential distribution with the input mean.
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
exponential distribution with the input mean.
SparkContext used to create the RDD.
Mean, or 1 / lambda, for the Exponential distribution.
Number of Vectors in the RDD.
Number of elements in each Vector.
Number of partitions in the RDD (default: sc.defaultParallelism
)
Random seed (default: a random long integer).
RDD[Vector] with vectors containing i.i.d.
samples ~ Exp(mean).
RandomRDDs#gammaJavaRDD with the default number of partitions and the default seed.
RandomRDDs#gammaJavaRDD with the default seed.
Java-friendly version of RandomRDDs#gammaRDD.
RandomRDDs#gammaJavaVectorRDD with the default number of partitions and the default seed.
RandomRDDs#gammaJavaVectorRDD with the default seed.
Java-friendly version of RandomRDDs#gammaVectorRDD.
Generates an RDD comprised of i.i.d.
samples from the gamma distribution with the input
shape and scale.
Generates an RDD comprised of i.i.d.
samples from the gamma distribution with the input
shape and scale.
SparkContext used to create the RDD.
shape parameter (> 0) for the gamma distribution
scale parameter (> 0) for the gamma distribution
Size of the RDD.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Double] comprised of i.i.d.
samples ~ Pois(mean).
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
gamma distribution with the input shape and scale.
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
gamma distribution with the input shape and scale.
SparkContext used to create the RDD.
shape parameter (> 0) for the gamma distribution.
scale parameter (> 0) for the gamma distribution.
Number of Vectors in the RDD.
Number of elements in each Vector.
Number of partitions in the RDD (default: sc.defaultParallelism
)
Random seed (default: a random long integer).
RDD[Vector] with vectors containing i.i.d.
samples ~ Exp(mean).
RandomRDDs#logNormalJavaRDD with the default number of partitions and the default seed.
RandomRDDs#logNormalJavaRDD with the default seed.
Java-friendly version of RandomRDDs#logNormalRDD.
RandomRDDs#logNormalJavaVectorRDD with the default number of partitions and the default seed.
RandomRDDs#logNormalJavaVectorRDD with the default seed.
Java-friendly version of RandomRDDs#logNormalVectorRDD.
Generates an RDD comprised of i.i.d.
samples from the log normal distribution with the input
mean and standard deviation
Generates an RDD comprised of i.i.d.
samples from the log normal distribution with the input
mean and standard deviation
SparkContext used to create the RDD.
mean for the log normal distribution
standard deviation for the log normal distribution
Size of the RDD.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Double] comprised of i.i.d.
samples ~ Pois(mean).
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from a
log normal distribution.
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from a
log normal distribution.
SparkContext used to create the RDD.
Mean of the log normal distribution.
Standard deviation of the log normal distribution.
Number of Vectors in the RDD.
Number of elements in each Vector.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Vector] with vectors containing i.i.d.
samples.
RandomRDDs#normalJavaRDD with the default number of partitions and the default seed.
RandomRDDs#normalJavaRDD with the default seed.
Java-friendly version of RandomRDDs#normalRDD.
RandomRDDs#normalJavaVectorRDD with the default number of partitions and the default seed.
RandomRDDs#normalJavaVectorRDD with the default seed.
Java-friendly version of RandomRDDs#normalVectorRDD.
Generates an RDD comprised of i.i.d.
samples from the standard normal distribution.
Generates an RDD comprised of i.i.d.
samples from the standard normal distribution.
To transform the distribution in the generated RDD from standard normal to some other normal
N(mean, sigma2)
, use RandomRDDs.normalRDD(sc, n, p, seed).map(v => mean + sigma * v)
.
SparkContext used to create the RDD.
Size of the RDD.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Double] comprised of i.i.d.
samples ~ N(0.0, 1.0).
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
standard normal distribution.
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
standard normal distribution.
SparkContext used to create the RDD.
Number of Vectors in the RDD.
Number of elements in each Vector.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Vector] with vectors containing i.i.d.
samples ~ N(0.0, 1.0)
.
RandomRDDs#poissonJavaRDD with the default number of partitions and the default seed.
RandomRDDs#poissonJavaRDD with the default seed.
Java-friendly version of RandomRDDs#poissonRDD.
RandomRDDs#poissonJavaVectorRDD with the default number of partitions and the default seed.
RandomRDDs#poissonJavaVectorRDD with the default seed.
Java-friendly version of RandomRDDs#poissonVectorRDD.
Generates an RDD comprised of i.i.d.
samples from the Poisson distribution with the input
mean.
Generates an RDD comprised of i.i.d.
samples from the Poisson distribution with the input
mean.
SparkContext used to create the RDD.
Mean, or lambda, for the Poisson distribution.
Size of the RDD.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Double] comprised of i.i.d.
samples ~ Pois(mean).
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
Poisson distribution with the input mean.
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
Poisson distribution with the input mean.
SparkContext used to create the RDD.
Mean, or lambda, for the Poisson distribution.
Number of Vectors in the RDD.
Number of elements in each Vector.
Number of partitions in the RDD (default: sc.defaultParallelism
)
Random seed (default: a random long integer).
RDD[Vector] with vectors containing i.i.d.
samples ~ Pois(mean).
:: DeveloperApi ::
Generates an RDD comprised of i.i.d.
samples produced by the input RandomDataGenerator.
:: DeveloperApi ::
Generates an RDD comprised of i.i.d.
samples produced by the input RandomDataGenerator.
SparkContext used to create the RDD.
RandomDataGenerator used to populate the RDD.
Size of the RDD.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Double] comprised of i.i.d.
samples produced by generator.
:: DeveloperApi ::
Generates an RDD[Vector] with vectors containing i.i.d.
samples produced by the
input RandomDataGenerator.
:: DeveloperApi ::
Generates an RDD[Vector] with vectors containing i.i.d.
samples produced by the
input RandomDataGenerator.
SparkContext used to create the RDD.
RandomDataGenerator used to populate the RDD.
Number of Vectors in the RDD.
Number of elements in each Vector.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Vector] with vectors containing i.i.d.
samples produced by generator.
RandomRDDs#uniformJavaRDD with the default number of partitions and the default seed.
RandomRDDs#uniformJavaRDD with the default seed.
Java-friendly version of RandomRDDs#uniformRDD.
RandomRDDs#uniformJavaVectorRDD with the default number of partitions and the default seed.
RandomRDDs#uniformJavaVectorRDD with the default seed.
Java-friendly version of RandomRDDs#uniformVectorRDD.
Generates an RDD comprised of i.i.d.
samples from the uniform distribution U(0.0, 1.0)
.
Generates an RDD comprised of i.i.d.
samples from the uniform distribution U(0.0, 1.0)
.
To transform the distribution in the generated RDD from U(0.0, 1.0)
to U(a, b)
, use
RandomRDDs.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v)
.
SparkContext used to create the RDD.
Size of the RDD.
Number of partitions in the RDD (default: sc.defaultParallelism
).
Random seed (default: a random long integer).
RDD[Double] comprised of i.i.d.
samples ~ U(0.0, 1.0)
.
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
uniform distribution on U(0.0, 1.0)
.
Generates an RDD[Vector] with vectors containing i.i.d.
samples drawn from the
uniform distribution on U(0.0, 1.0)
.
SparkContext used to create the RDD.
Number of Vectors in the RDD.
Number of elements in each Vector.
Number of partitions in the RDD.
Seed for the RNG that generates the seed for the generator in each partition.
RDD[Vector] with vectors containing i.i.d samples ~ U(0.0, 1.0)
.
:: Experimental :: Generator methods for creating RDDs comprised of
i.i.d.
samples from some distribution.