org.apache.spark.mllib.random

RandomRDDs

object RandomRDDs

:: Experimental :: Generator methods for creating RDDs comprised of i.i.d. samples from some distribution.

Annotations
@Experimental()
Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. RandomRDDs
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDD

    RandomRDDs#exponentialJavaRDD with the default number of partitions and the default seed.

  11. def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#exponentialJavaRDD with the default seed.

  12. def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#exponentialRDD.

  13. def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#exponentialJavaVectorRDD with the default number of partitions and the default seed.

  14. def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#exponentialJavaVectorRDD with the default seed.

  15. def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#exponentialVectorRDD.

  16. def exponentialRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.i.d. samples from the exponential distribution with the input mean.

    Generates an RDD comprised of i.i.d. samples from the exponential distribution with the input mean.

    sc

    SparkContext used to create the RDD.

    mean

    Mean, or 1 / lambda, for the exponential distribution.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ Pois(mean).

  17. def exponentialVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the exponential distribution with the input mean.

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the exponential distribution with the input mean.

    sc

    SparkContext used to create the RDD.

    mean

    Mean, or 1 / lambda, for the Exponential distribution.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism)

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples ~ Exp(mean).

  18. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  19. def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long): JavaDoubleRDD

    RandomRDDs#gammaJavaRDD with the default number of partitions and the default seed.

  20. def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#gammaJavaRDD with the default seed.

  21. def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#gammaRDD.

  22. def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#gammaJavaVectorRDD with the default number of partitions and the default seed.

  23. def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#gammaJavaVectorRDD with the default seed.

  24. def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#gammaVectorRDD.

  25. def gammaRDD(sc: SparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.i.d. samples from the gamma distribution with the input shape and scale.

    Generates an RDD comprised of i.i.d. samples from the gamma distribution with the input shape and scale.

    sc

    SparkContext used to create the RDD.

    shape

    shape parameter (> 0) for the gamma distribution

    scale

    scale parameter (> 0) for the gamma distribution

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ Pois(mean).

  26. def gammaVectorRDD(sc: SparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the gamma distribution with the input shape and scale.

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the gamma distribution with the input shape and scale.

    sc

    SparkContext used to create the RDD.

    shape

    shape parameter (> 0) for the gamma distribution.

    scale

    scale parameter (> 0) for the gamma distribution.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism)

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples ~ Exp(mean).

  27. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  28. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  29. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  30. def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long): JavaDoubleRDD

    RandomRDDs#logNormalJavaRDD with the default number of partitions and the default seed.

  31. def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#logNormalJavaRDD with the default seed.

  32. def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#logNormalRDD.

  33. def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#logNormalJavaVectorRDD with the default number of partitions and the default seed.

  34. def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#logNormalJavaVectorRDD with the default seed.

  35. def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#logNormalVectorRDD.

  36. def logNormalRDD(sc: SparkContext, mean: Double, std: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.i.d. samples from the log normal distribution with the input mean and standard deviation

    Generates an RDD comprised of i.i.d. samples from the log normal distribution with the input mean and standard deviation

    sc

    SparkContext used to create the RDD.

    mean

    mean for the log normal distribution

    std

    standard deviation for the log normal distribution

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ Pois(mean).

  37. def logNormalVectorRDD(sc: SparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from a log normal distribution.

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from a log normal distribution.

    sc

    SparkContext used to create the RDD.

    mean

    Mean of the log normal distribution.

    std

    Standard deviation of the log normal distribution.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples.

  38. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  39. def normalJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDD

    RandomRDDs#normalJavaRDD with the default number of partitions and the default seed.

  40. def normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#normalJavaRDD with the default seed.

  41. def normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#normalRDD.

  42. def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#normalJavaVectorRDD with the default number of partitions and the default seed.

  43. def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#normalJavaVectorRDD with the default seed.

  44. def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#normalVectorRDD.

  45. def normalRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.i.d. samples from the standard normal distribution.

    Generates an RDD comprised of i.i.d. samples from the standard normal distribution.

    To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma2), use RandomRDDs.normalRDD(sc, n, p, seed).map(v => mean + sigma * v).

    sc

    SparkContext used to create the RDD.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ N(0.0, 1.0).

  46. def normalVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the standard normal distribution.

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the standard normal distribution.

    sc

    SparkContext used to create the RDD.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples ~ N(0.0, 1.0).

  47. final def notify(): Unit

    Definition Classes
    AnyRef
  48. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  49. def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDD

    RandomRDDs#poissonJavaRDD with the default number of partitions and the default seed.

  50. def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#poissonJavaRDD with the default seed.

  51. def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#poissonRDD.

  52. def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#poissonJavaVectorRDD with the default number of partitions and the default seed.

  53. def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#poissonJavaVectorRDD with the default seed.

  54. def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#poissonVectorRDD.

  55. def poissonRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.i.d. samples from the Poisson distribution with the input mean.

    Generates an RDD comprised of i.i.d. samples from the Poisson distribution with the input mean.

    sc

    SparkContext used to create the RDD.

    mean

    Mean, or lambda, for the Poisson distribution.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ Pois(mean).

  56. def poissonVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean.

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the Poisson distribution with the input mean.

    sc

    SparkContext used to create the RDD.

    mean

    Mean, or lambda, for the Poisson distribution.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism)

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples ~ Pois(mean).

  57. def randomRDD[T](sc: SparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong())(implicit arg0: ClassTag[T]): RDD[T]

    :: DeveloperApi :: Generates an RDD comprised of i.i.d. samples produced by the input RandomDataGenerator.

    :: DeveloperApi :: Generates an RDD comprised of i.i.d. samples produced by the input RandomDataGenerator.

    sc

    SparkContext used to create the RDD.

    generator

    RandomDataGenerator used to populate the RDD.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples produced by generator.

    Annotations
    @DeveloperApi()
  58. def randomVectorRDD(sc: SparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    :: DeveloperApi :: Generates an RDD[Vector] with vectors containing i.i.d. samples produced by the input RandomDataGenerator.

    :: DeveloperApi :: Generates an RDD[Vector] with vectors containing i.i.d. samples produced by the input RandomDataGenerator.

    sc

    SparkContext used to create the RDD.

    generator

    RandomDataGenerator used to populate the RDD.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Vector] with vectors containing i.i.d. samples produced by generator.

    Annotations
    @DeveloperApi()
  59. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  60. def toString(): String

    Definition Classes
    AnyRef → Any
  61. def uniformJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDD

    RandomRDDs#uniformJavaRDD with the default number of partitions and the default seed.

  62. def uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDD

    RandomRDDs#uniformJavaRDD with the default seed.

  63. def uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDD

    Java-friendly version of RandomRDDs#uniformRDD.

  64. def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]

    RandomRDDs#uniformJavaVectorRDD with the default number of partitions and the default seed.

  65. def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]

    RandomRDDs#uniformJavaVectorRDD with the default seed.

  66. def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]

    Java-friendly version of RandomRDDs#uniformVectorRDD.

  67. def uniformRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]

    Generates an RDD comprised of i.i.d. samples from the uniform distribution U(0.0, 1.0).

    Generates an RDD comprised of i.i.d. samples from the uniform distribution U(0.0, 1.0).

    To transform the distribution in the generated RDD from U(0.0, 1.0) to U(a, b), use RandomRDDs.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v).

    sc

    SparkContext used to create the RDD.

    size

    Size of the RDD.

    numPartitions

    Number of partitions in the RDD (default: sc.defaultParallelism).

    seed

    Random seed (default: a random long integer).

    returns

    RDD[Double] comprised of i.i.d. samples ~ U(0.0, 1.0).

  68. def uniformVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the uniform distribution on U(0.0, 1.0).

    Generates an RDD[Vector] with vectors containing i.i.d. samples drawn from the uniform distribution on U(0.0, 1.0).

    sc

    SparkContext used to create the RDD.

    numRows

    Number of Vectors in the RDD.

    numCols

    Number of elements in each Vector.

    numPartitions

    Number of partitions in the RDD.

    seed

    Seed for the RNG that generates the seed for the generator in each partition.

    returns

    RDD[Vector] with vectors containing i.i.d samples ~ U(0.0, 1.0).

  69. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  70. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  71. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped