Class/Object

org.apache.spark.ml.tuning

TrainValidationSplit

Related Docs: object TrainValidationSplit | package tuning

Permalink

class TrainValidationSplit extends Estimator[TrainValidationSplitModel] with TrainValidationSplitParams with MLWritable with Logging

:: Experimental :: Validation for hyper-parameter tuning. Randomly splits the input dataset into train and validation sets, and uses evaluation metric on the validation set to select the best model. Similar to CrossValidator, but only splits the set once.

Annotations
@Since( "1.5.0" ) @Experimental()
Source
TrainValidationSplit.scala
Linear Supertypes
MLWritable, TrainValidationSplitParams, ValidatorParams, HasSeed, Estimator[TrainValidationSplitModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. TrainValidationSplit
  2. MLWritable
  3. TrainValidationSplitParams
  4. ValidatorParams
  5. HasSeed
  6. Estimator
  7. PipelineStage
  8. Logging
  9. Params
  10. Serializable
  11. Serializable
  12. Identifiable
  13. AnyRef
  14. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TrainValidationSplit()

    Permalink
    Annotations
    @Since( "1.5.0" )
  2. new TrainValidationSplit(uid: String)

    Permalink
    Annotations
    @Since( "1.5.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final def clear(param: Param[_]): TrainValidationSplit.this.type

    Permalink

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def copy(extra: ParamMap): TrainValidationSplit

    Permalink

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly.

    Definition Classes
    TrainValidationSplitEstimatorPipelineStageParams
    Annotations
    @Since( "1.5.0" )
    See also

    defaultCopy()

  9. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Permalink

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  10. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. val estimator: Param[Estimator[_]]

    Permalink

    param for the estimator to be validated

    param for the estimator to be validated

    Definition Classes
    ValidatorParams
  14. val estimatorParamMaps: Param[Array[ParamMap]]

    Permalink

    param for estimator param maps

    param for estimator param maps

    Definition Classes
    ValidatorParams
  15. val evaluator: Param[Evaluator]

    Permalink

    param for the evaluator used to select hyper-parameters that maximize the validated metric

    param for the evaluator used to select hyper-parameters that maximize the validated metric

    Definition Classes
    ValidatorParams
  16. def explainParam(param: Param[_]): String

    Permalink

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  17. def explainParams(): String

    Permalink

    Explains all params of this instance.

    Explains all params of this instance.

    Definition Classes
    Params
    See also

    explainParam()

  18. final def extractParamMap(): ParamMap

    Permalink

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  19. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

    Definition Classes
    Params
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. def fit(dataset: Dataset[_]): TrainValidationSplitModel

    Permalink

    Fits a model to the input data.

    Fits a model to the input data.

    Definition Classes
    TrainValidationSplitEstimator
    Annotations
    @Since( "2.0.0" )
  22. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[TrainValidationSplitModel]

    Permalink

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.

    dataset

    input dataset

    paramMaps

    An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  23. def fit(dataset: Dataset[_], paramMap: ParamMap): TrainValidationSplitModel

    Permalink

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    Parameter map. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  24. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): TrainValidationSplitModel

    Permalink

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    firstParamPair

    the first param pair, overrides embedded params

    otherParamPairs

    other param pairs. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  25. final def get[T](param: Param[T]): Option[T]

    Permalink

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  26. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  27. final def getDefault[T](param: Param[T]): Option[T]

    Permalink

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  28. def getEstimator: Estimator[_]

    Permalink

    Definition Classes
    ValidatorParams
  29. def getEstimatorParamMaps: Array[ParamMap]

    Permalink

    Definition Classes
    ValidatorParams
  30. def getEvaluator: Evaluator

    Permalink

    Definition Classes
    ValidatorParams
  31. final def getOrDefault[T](param: Param[T]): T

    Permalink

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  32. def getParam(paramName: String): Param[Any]

    Permalink

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  33. final def getSeed: Long

    Permalink

    Definition Classes
    HasSeed
  34. def getTrainRatio: Double

    Permalink

    Definition Classes
    TrainValidationSplitParams
  35. final def hasDefault[T](param: Param[T]): Boolean

    Permalink

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  36. def hasParam(paramName: String): Boolean

    Permalink

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  37. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  38. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  39. final def isDefined(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  40. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  41. final def isSet(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  42. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  43. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  44. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  45. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  46. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  47. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  48. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  49. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  50. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  51. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  52. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  53. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  54. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  55. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  56. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  57. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  58. lazy val params: Array[Param[_]]

    Permalink

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Note: Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

    Definition Classes
    Params
  59. def save(path: String): Unit

    Permalink

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  60. final val seed: LongParam

    Permalink

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  61. final def set(paramPair: ParamPair[_]): TrainValidationSplit.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  62. final def set(param: String, value: Any): TrainValidationSplit.this.type

    Permalink

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  63. final def set[T](param: Param[T], value: T): TrainValidationSplit.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  64. final def setDefault(paramPairs: ParamPair[_]*): TrainValidationSplit.this.type

    Permalink

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault(). Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  65. final def setDefault[T](param: Param[T], value: T): TrainValidationSplit.this.type

    Permalink

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  66. def setEstimator(value: Estimator[_]): TrainValidationSplit.this.type

    Permalink

    Annotations
    @Since( "1.5.0" )
  67. def setEstimatorParamMaps(value: Array[ParamMap]): TrainValidationSplit.this.type

    Permalink

    Annotations
    @Since( "1.5.0" )
  68. def setEvaluator(value: Evaluator): TrainValidationSplit.this.type

    Permalink

    Annotations
    @Since( "1.5.0" )
  69. def setSeed(value: Long): TrainValidationSplit.this.type

    Permalink

    Annotations
    @Since( "2.0.0" )
  70. def setTrainRatio(value: Double): TrainValidationSplit.this.type

    Permalink

    Annotations
    @Since( "1.5.0" )
  71. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  72. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  73. val trainRatio: DoubleParam

    Permalink

    Param for ratio between train and validation data.

    Param for ratio between train and validation data. Must be between 0 and 1. Default: 0.75

    Definition Classes
    TrainValidationSplitParams
  74. def transformSchema(schema: StructType): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema.

    Definition Classes
    TrainValidationSplitPipelineStage
    Annotations
    @Since( "1.5.0" )
  75. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  76. def transformSchemaImpl(schema: StructType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    ValidatorParams
  77. val uid: String

    Permalink

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    TrainValidationSplitIdentifiable
    Annotations
    @Since( "1.5.0" )
  78. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  79. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  80. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  81. def write: MLWriter

    Permalink

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    TrainValidationSplitMLWritable
    Annotations
    @Since( "2.0.0" )

Deprecated Value Members

  1. def validateParams(): Unit

    Permalink

    Validates parameter values stored internally.

    Validates parameter values stored internally. Raise an exception if any parameter value is invalid.

    This only needs to check for interactions between parameters. Parameter value checks which do not depend on other parameters are handled by Param.validate(). This method does not handle input/output column parameters; those are checked during schema validation.

    Definition Classes
    Params
    Annotations
    @deprecated
    Deprecated

    (Since version 2.0.0) Will be removed in 2.1.0. Checks should be merged into transformSchema.

Inherited from MLWritable

Inherited from TrainValidationSplitParams

Inherited from ValidatorParams

Inherited from HasSeed

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters