Class/Object

org.apache.spark.mllib.rdd

RDDFunctions

Related Docs: object RDDFunctions | package rdd

Permalink

class RDDFunctions[T] extends Serializable

Machine learning specific RDD functions.

Annotations
@DeveloperApi()
Source
RDDFunctions.scala
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. RDDFunctions
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new RDDFunctions(self: RDD[T])(implicit arg0: ClassTag[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. def sliding(windowSize: Int): RDD[Array[T]]

    Permalink

    Int)* with step = 1.

  16. def sliding(windowSize: Int, step: Int): RDD[Array[T]]

    Permalink

    Returns a RDD from grouping items of its parent RDD in fixed size blocks by passing a sliding window over them.

    Returns a RDD from grouping items of its parent RDD in fixed size blocks by passing a sliding window over them. The ordering is first based on the partition index and then the ordering of items within each partition. This is similar to sliding in Scala collections, except that it becomes an empty RDD if the window size is greater than the total number of items. It needs to trigger a Spark job if the parent RDD has more than one partitions and the window size is greater than 1.

  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  18. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  19. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped