Class

org.apache.spark.mllib.feature

IDF

Related Doc: package feature

Permalink

class IDF extends AnyRef

Inverse document frequency (IDF). The standard formulation is used: idf = log((m + 1) / (d(t) + 1)), where m is the total number of documents and d(t) is the number of documents that contain term t.

This implementation supports filtering out terms which do not appear in a minimum number of documents (controlled by the variable minDocFreq). For terms that are not in at least minDocFreq documents, the IDF is found as 0, resulting in TF-IDFs of 0.

Annotations
@Since( "1.1.0" )
Source
IDF.scala
Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IDF
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new IDF()

    Permalink
    Annotations
    @Since( "1.1.0" )
  2. new IDF(minDocFreq: Int)

    Permalink

    minDocFreq

    minimum of documents in which a term should appear for filtering

    Annotations
    @Since( "1.2.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. def fit(dataset: JavaRDD[Vector]): IDFModel

    Permalink

    Computes the inverse document frequency.

    Computes the inverse document frequency.

    dataset

    a JavaRDD of term frequency vectors

    Annotations
    @Since( "1.1.0" )
  10. def fit(dataset: RDD[Vector]): IDFModel

    Permalink

    Computes the inverse document frequency.

    Computes the inverse document frequency.

    dataset

    an RDD of term frequency vectors

    Annotations
    @Since( "1.1.0" )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. val minDocFreq: Int

    Permalink

    minimum of documents in which a term should appear for filtering

    minimum of documents in which a term should appear for filtering

    Annotations
    @Since( "1.2.0" )
  15. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  19. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  20. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped