Class/Object

org.apache.spark.ml.regression

GBTRegressor

Related Docs: object GBTRegressor | package regression

Permalink

class GBTRegressor extends Predictor[Vector, GBTRegressor, GBTRegressionModel] with GBTRegressorParams with DefaultParamsWritable with Logging

Gradient-Boosted Trees (GBTs) learning algorithm for regression. It supports both continuous and categorical features.

The implementation is based upon: J.H. Friedman. "Stochastic Gradient Boosting." 1999.

Notes on Gradient Boosting vs. TreeBoost:

Annotations
@Since( "1.4.0" )
Source
GBTRegressor.scala
Linear Supertypes
DefaultParamsWritable, MLWritable, GBTRegressorParams, TreeRegressorParams, GBTParams, HasValidationIndicatorCol, HasStepSize, HasMaxIter, TreeEnsembleParams, DecisionTreeParams, HasSeed, HasCheckpointInterval, Predictor[Vector, GBTRegressor, GBTRegressionModel], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Estimator[GBTRegressionModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. GBTRegressor
  2. DefaultParamsWritable
  3. MLWritable
  4. GBTRegressorParams
  5. TreeRegressorParams
  6. GBTParams
  7. HasValidationIndicatorCol
  8. HasStepSize
  9. HasMaxIter
  10. TreeEnsembleParams
  11. DecisionTreeParams
  12. HasSeed
  13. HasCheckpointInterval
  14. Predictor
  15. PredictorParams
  16. HasPredictionCol
  17. HasFeaturesCol
  18. HasLabelCol
  19. Estimator
  20. PipelineStage
  21. Logging
  22. Params
  23. Serializable
  24. Serializable
  25. Identifiable
  26. AnyRef
  27. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GBTRegressor()

    Permalink
    Annotations
    @Since( "1.4.0" )
  2. new GBTRegressor(uid: String)

    Permalink
    Annotations
    @Since( "1.4.0" )

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. final val cacheNodeIds: BooleanParam

    Permalink

    If false, the algorithm will pass trees to executors to match instances with nodes.

    If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)

    Definition Classes
    DecisionTreeParams
  7. final val checkpointInterval: IntParam

    Permalink

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1).

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.

    Definition Classes
    HasCheckpointInterval
  8. final def clear(param: Param[_]): GBTRegressor.this.type

    Permalink

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def copy(extra: ParamMap): GBTRegressor

    Permalink

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    GBTRegressorPredictorEstimatorPipelineStageParams
    Annotations
    @Since( "1.4.0" )
  11. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Permalink

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  12. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  13. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  15. def explainParam(param: Param[_]): String

    Permalink

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  16. def explainParams(): String

    Permalink

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  17. def extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]

    Permalink

    Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.

    Attributes
    protected
    Definition Classes
    Predictor
  18. final def extractParamMap(): ParamMap

    Permalink

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  19. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  20. final val featureSubsetStrategy: Param[String]

    Permalink

    The number of features to consider for splits at each tree node.

    The number of features to consider for splits at each tree node. Supported options:

    • "auto": Choose automatically for task: If numTrees == 1, set to "all." If numTrees > 1 (forest), set to "sqrt" for classification and to "onethird" for regression.
    • "all": use all features
    • "onethird": use 1/3 of the features
    • "sqrt": use sqrt(number of features)
    • "log2": use log2(number of features)
    • "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of features), use n features. (default = "auto")

    These various settings are based on the following references:

    • log2: tested in Breiman (2001)
    • sqrt: recommended by Breiman manual for random forests
    • The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
    Definition Classes
    TreeEnsembleParams
    See also

    Breiman manual for random forests

    Breiman (2001)

  21. final val featuresCol: Param[String]

    Permalink

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  22. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  23. def fit(dataset: Dataset[_]): GBTRegressionModel

    Permalink

    Fits a model to the input data.

    Fits a model to the input data.

    Definition Classes
    PredictorEstimator
  24. def fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[GBTRegressionModel]

    Permalink

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.

    dataset

    input dataset

    paramMaps

    An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  25. def fit(dataset: Dataset[_], paramMap: ParamMap): GBTRegressionModel

    Permalink

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    Parameter map. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  26. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): GBTRegressionModel

    Permalink

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    firstParamPair

    the first param pair, overrides embedded params

    otherParamPairs

    other param pairs. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  27. final def get[T](param: Param[T]): Option[T]

    Permalink

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  28. final def getCacheNodeIds: Boolean

    Permalink

    Definition Classes
    DecisionTreeParams
  29. final def getCheckpointInterval: Int

    Permalink

    Definition Classes
    HasCheckpointInterval
  30. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  31. final def getDefault[T](param: Param[T]): Option[T]

    Permalink

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  32. final def getFeatureSubsetStrategy: String

    Permalink

    Definition Classes
    TreeEnsembleParams
  33. final def getFeaturesCol: String

    Permalink

    Definition Classes
    HasFeaturesCol
  34. final def getImpurity: String

    Permalink

    Definition Classes
    TreeRegressorParams
  35. final def getLabelCol: String

    Permalink

    Definition Classes
    HasLabelCol
  36. def getLossType: String

    Permalink

    Definition Classes
    GBTRegressorParams
  37. final def getMaxBins: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  38. final def getMaxDepth: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  39. final def getMaxIter: Int

    Permalink

    Definition Classes
    HasMaxIter
  40. final def getMaxMemoryInMB: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  41. final def getMinInfoGain: Double

    Permalink

    Definition Classes
    DecisionTreeParams
  42. final def getMinInstancesPerNode: Int

    Permalink

    Definition Classes
    DecisionTreeParams
  43. final def getOrDefault[T](param: Param[T]): T

    Permalink

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  44. def getParam(paramName: String): Param[Any]

    Permalink

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  45. final def getPredictionCol: String

    Permalink

    Definition Classes
    HasPredictionCol
  46. final def getSeed: Long

    Permalink

    Definition Classes
    HasSeed
  47. final def getStepSize: Double

    Permalink

    Definition Classes
    HasStepSize
  48. final def getSubsamplingRate: Double

    Permalink

    Definition Classes
    TreeEnsembleParams
  49. final def getValidationIndicatorCol: String

    Permalink

    Definition Classes
    HasValidationIndicatorCol
  50. final def getValidationTol: Double

    Permalink

    Definition Classes
    GBTParams
    Annotations
    @Since( "2.4.0" )
  51. final def hasDefault[T](param: Param[T]): Boolean

    Permalink

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  52. def hasParam(paramName: String): Boolean

    Permalink

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  53. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  54. final val impurity: Param[String]

    Permalink

    Criterion used for information gain calculation (case-insensitive).

    Criterion used for information gain calculation (case-insensitive). Supported: "variance". (default = variance)

    Definition Classes
    TreeRegressorParams
  55. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean = false): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  56. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  57. final def isDefined(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  58. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  59. final def isSet(param: Param[_]): Boolean

    Permalink

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  60. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  61. final val labelCol: Param[String]

    Permalink

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  62. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  63. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  64. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  65. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  66. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  67. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  68. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  69. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  70. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  71. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  72. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. val lossType: Param[String]

    Permalink

    Loss function which GBT tries to minimize.

    Loss function which GBT tries to minimize. (case-insensitive) Supported: "squared" (L2) and "absolute" (L1) (default = squared)

    Definition Classes
    GBTRegressorParams
  75. final val maxBins: IntParam

    Permalink

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be >= 2 and >= number of categories in any categorical feature. (default = 32)

    Definition Classes
    DecisionTreeParams
  76. final val maxDepth: IntParam

    Permalink

    Maximum depth of the tree (>= 0).

    Maximum depth of the tree (>= 0). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)

    Definition Classes
    DecisionTreeParams
  77. final val maxIter: IntParam

    Permalink

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  78. final val maxMemoryInMB: IntParam

    Permalink

    Maximum memory in MB allocated to histogram aggregation.

    Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)

    Definition Classes
    DecisionTreeParams
  79. final val minInfoGain: DoubleParam

    Permalink

    Minimum information gain for a split to be considered at a tree node.

    Minimum information gain for a split to be considered at a tree node. Should be >= 0.0. (default = 0.0)

    Definition Classes
    DecisionTreeParams
  80. final val minInstancesPerNode: IntParam

    Permalink

    Minimum number of instances each child must have after split.

    Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Should be >= 1. (default = 1)

    Definition Classes
    DecisionTreeParams
  81. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  82. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  83. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  84. lazy val params: Array[Param[_]]

    Permalink

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  85. final val predictionCol: Param[String]

    Permalink

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  86. def save(path: String): Unit

    Permalink

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  87. final val seed: LongParam

    Permalink

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  88. final def set(paramPair: ParamPair[_]): GBTRegressor.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  89. final def set(param: String, value: Any): GBTRegressor.this.type

    Permalink

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  90. final def set[T](param: Param[T], value: T): GBTRegressor.this.type

    Permalink

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  91. def setCacheNodeIds(value: Boolean): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → DecisionTreeParams
    Annotations
    @Since( "1.4.0" )
  92. def setCheckpointInterval(value: Int): GBTRegressor.this.type

    Permalink

    Specifies how often to checkpoint the cached node IDs.

    Specifies how often to checkpoint the cached node IDs. E.g. 10 means that the cache will get checkpointed every 10 iterations. This is only used if cacheNodeIds is true and if the checkpoint directory is set in org.apache.spark.SparkContext. Must be at least 1. (default = 10)

    Definition Classes
    GBTRegressor → DecisionTreeParams
    Annotations
    @Since( "1.4.0" )
  93. final def setDefault(paramPairs: ParamPair[_]*): GBTRegressor.this.type

    Permalink

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  94. final def setDefault[T](param: Param[T], value: T): GBTRegressor.this.type

    Permalink

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  95. def setFeatureSubsetStrategy(value: String): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → TreeEnsembleParams
    Annotations
    @Since( "2.3.0" )
  96. def setFeaturesCol(value: String): GBTRegressor

    Permalink

    Definition Classes
    Predictor
  97. def setImpurity(value: String): GBTRegressor.this.type

    Permalink

    The impurity setting is ignored for GBT models.

    The impurity setting is ignored for GBT models. Individual trees are built using impurity "Variance."

    Definition Classes
    GBTRegressor → TreeRegressorParams
    Annotations
    @Since( "1.4.0" )
  98. def setLabelCol(value: String): GBTRegressor

    Permalink

    Definition Classes
    Predictor
  99. def setLossType(value: String): GBTRegressor.this.type

    Permalink

    Annotations
    @Since( "1.4.0" )
  100. def setMaxBins(value: Int): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → DecisionTreeParams
    Annotations
    @Since( "1.4.0" )
  101. def setMaxDepth(value: Int): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → DecisionTreeParams
    Annotations
    @Since( "1.4.0" )
  102. def setMaxIter(value: Int): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → GBTParams
    Annotations
    @Since( "1.4.0" )
  103. def setMaxMemoryInMB(value: Int): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → DecisionTreeParams
    Annotations
    @Since( "1.4.0" )
  104. def setMinInfoGain(value: Double): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → DecisionTreeParams
    Annotations
    @Since( "1.4.0" )
  105. def setMinInstancesPerNode(value: Int): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → DecisionTreeParams
    Annotations
    @Since( "1.4.0" )
  106. def setPredictionCol(value: String): GBTRegressor

    Permalink

    Definition Classes
    Predictor
  107. def setSeed(value: Long): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → DecisionTreeParams
    Annotations
    @Since( "1.4.0" )
  108. def setStepSize(value: Double): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → GBTParams
    Annotations
    @Since( "1.4.0" )
  109. def setSubsamplingRate(value: Double): GBTRegressor.this.type

    Permalink

    Definition Classes
    GBTRegressor → TreeEnsembleParams
    Annotations
    @Since( "1.4.0" )
  110. def setValidationIndicatorCol(value: String): GBTRegressor.this.type

    Permalink

    Annotations
    @Since( "2.4.0" )
  111. final val stepSize: DoubleParam

    Permalink

    Param for Step size (a.k.a.

    Param for Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of each estimator. (default = 0.1)

    Definition Classes
    GBTParams → HasStepSize
  112. final val subsamplingRate: DoubleParam

    Permalink

    Fraction of the training data used for learning each decision tree, in range (0, 1].

    Fraction of the training data used for learning each decision tree, in range (0, 1]. (default = 1.0)

    Definition Classes
    TreeEnsembleParams
  113. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  114. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  115. def train(dataset: Dataset[_]): GBTRegressionModel

    Permalink

    Train a model using the given dataset and parameters.

    Train a model using the given dataset and parameters. Developers can implement this instead of fit() to avoid dealing with schema validation and copying parameters into the model.

    dataset

    Training dataset

    returns

    Fitted model

    Attributes
    protected
    Definition Classes
    GBTRegressorPredictor
  116. def transformSchema(schema: StructType): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    PredictorPipelineStage
  117. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  118. val uid: String

    Permalink

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    GBTRegressorIdentifiable
    Annotations
    @Since( "1.4.0" )
  119. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    PredictorParams
  120. final val validationIndicatorCol: Param[String]

    Permalink

    Param for name of the column that indicates whether each row is for training or for validation.

    Param for name of the column that indicates whether each row is for training or for validation. False indicates training; true indicates validation..

    Definition Classes
    HasValidationIndicatorCol
  121. final val validationTol: DoubleParam

    Permalink

    Threshold for stopping early when fit with validation is used.

    Threshold for stopping early when fit with validation is used. (This parameter is ignored when fit without validation is used.) The decision to stop early is decided based on this logic: If the current loss on the validation set is greater than 0.01, the diff of validation error is compared to relative tolerance which is validationTol * (current loss on the validation set). If the current loss on the validation set is less than or equal to 0.01, the diff of validation error is compared to absolute tolerance which is validationTol * 0.01.

    Definition Classes
    GBTParams
    Annotations
    @Since( "2.4.0" )
    See also

    validationIndicatorCol

  122. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  123. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  124. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  125. def write: MLWriter

    Permalink

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DefaultParamsWritableMLWritable

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from GBTRegressorParams

Inherited from TreeRegressorParams

Inherited from GBTParams

Inherited from HasValidationIndicatorCol

Inherited from HasStepSize

Inherited from HasMaxIter

Inherited from TreeEnsembleParams

Inherited from DecisionTreeParams

Inherited from HasSeed

Inherited from HasCheckpointInterval

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Estimator[GBTRegressionModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter setters

(expert-only) Parameter getters