Class/Object

org.apache.spark.mllib.regression

LinearRegressionWithSGD

Related Docs: object LinearRegressionWithSGD | package regression

Permalink

class LinearRegressionWithSGD extends GeneralizedLinearAlgorithm[LinearRegressionModel] with Serializable

Train a linear regression model with no regularization using Stochastic Gradient Descent. This solves the least squares regression formulation f(weights) = 1/n ||A weights-y||2 (which is the mean squared error). Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with its corresponding right hand side label y. See also the documentation for the precise formulation.

Annotations
@Since( "0.8.0" )
Source
LinearRegression.scala
Linear Supertypes
GeneralizedLinearAlgorithm[LinearRegressionModel], Serializable, Serializable, Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LinearRegressionWithSGD
  2. GeneralizedLinearAlgorithm
  3. Serializable
  4. Serializable
  5. Logging
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LinearRegressionWithSGD()

    Permalink

    Construct a LinearRegression object with default parameters: {stepSize: 1.0, numIterations: 100, miniBatchFraction: 1.0}.

    Construct a LinearRegression object with default parameters: {stepSize: 1.0, numIterations: 100, miniBatchFraction: 1.0}.

    Annotations
    @Since( "0.8.0" ) @deprecated
    Deprecated

    (Since version 2.0.0) Use ml.regression.LinearRegression or LBFGS

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. var addIntercept: Boolean

    Permalink

    Whether to add intercept (default: false).

    Whether to add intercept (default: false).

    Attributes
    protected
    Definition Classes
    GeneralizedLinearAlgorithm
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def createModel(weights: Vector, intercept: Double): LinearRegressionModel

    Permalink

    Create a model given the weights and intercept

    Create a model given the weights and intercept

    Attributes
    protected[org.apache.spark.mllib]
    Definition Classes
    LinearRegressionWithSGDGeneralizedLinearAlgorithm
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def generateInitialWeights(input: RDD[LabeledPoint]): Vector

    Permalink

    Generate the initial weights when the user does not supply them

    Generate the initial weights when the user does not supply them

    Attributes
    protected
    Definition Classes
    GeneralizedLinearAlgorithm
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def getNumFeatures: Int

    Permalink

    The dimension of training features.

    The dimension of training features.

    Definition Classes
    GeneralizedLinearAlgorithm
    Annotations
    @Since( "1.4.0" )
  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean = false): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  16. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  17. def isAddIntercept: Boolean

    Permalink

    Get if the algorithm uses addIntercept

    Get if the algorithm uses addIntercept

    Definition Classes
    GeneralizedLinearAlgorithm
    Annotations
    @Since( "1.4.0" )
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  20. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  21. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  22. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  23. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  24. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  25. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  26. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  27. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  28. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  29. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  30. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  31. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  32. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  33. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  34. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  35. var numFeatures: Int

    Permalink

    The dimension of training features.

    The dimension of training features.

    Attributes
    protected
    Definition Classes
    GeneralizedLinearAlgorithm
  36. var numOfLinearPredictor: Int

    Permalink

    In GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept.

    In GeneralizedLinearModel, only single linear predictor is allowed for both weights and intercept. However, for multinomial logistic regression, with K possible outcomes, we are training K-1 independent binary logistic regression models which requires K-1 sets of linear predictor.

    As a result, the workaround here is if more than two sets of linear predictors are needed, we construct bigger weights vector which can hold both weights and intercepts. If the intercepts are added, the dimension of weights will be (numOfLinearPredictor) * (numFeatures + 1) . If the intercepts are not added, the dimension of weights will be (numOfLinearPredictor) * numFeatures.

    Thus, the intercepts will be encapsulated into weights, and we leave the value of intercept in GeneralizedLinearModel as zero.

    Attributes
    protected
    Definition Classes
    GeneralizedLinearAlgorithm
  37. val optimizer: GradientDescent

    Permalink

    The optimizer to solve the problem.

    The optimizer to solve the problem.

    Definition Classes
    LinearRegressionWithSGDGeneralizedLinearAlgorithm
    Annotations
    @Since( "0.8.0" )
  38. def run(input: RDD[LabeledPoint], initialWeights: Vector): LinearRegressionModel

    Permalink

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided.

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries starting from the initial weights provided.

    Definition Classes
    GeneralizedLinearAlgorithm
    Annotations
    @Since( "1.0.0" )
  39. def run(input: RDD[LabeledPoint]): LinearRegressionModel

    Permalink

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.

    Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.

    Definition Classes
    GeneralizedLinearAlgorithm
    Annotations
    @Since( "0.8.0" )
  40. def setIntercept(addIntercept: Boolean): LinearRegressionWithSGD.this.type

    Permalink

    Set if the algorithm should add an intercept.

    Set if the algorithm should add an intercept. Default false. We set the default to false because adding the intercept will cause memory allocation.

    Definition Classes
    GeneralizedLinearAlgorithm
    Annotations
    @Since( "0.8.0" )
  41. def setValidateData(validateData: Boolean): LinearRegressionWithSGD.this.type

    Permalink

    Set if the algorithm should validate data before training.

    Set if the algorithm should validate data before training. Default true.

    Definition Classes
    GeneralizedLinearAlgorithm
    Annotations
    @Since( "0.8.0" )
  42. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  43. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  44. var validateData: Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    GeneralizedLinearAlgorithm
  45. val validators: Seq[(RDD[LabeledPoint]) ⇒ Boolean]

    Permalink
    Attributes
    protected
    Definition Classes
    GeneralizedLinearAlgorithm
  46. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  48. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped