MaxAbsScaler¶
-
class
pyspark.ml.feature.
MaxAbsScaler
(*, inputCol=None, outputCol=None)[source]¶ Rescale each feature individually to range [-1, 1] by dividing through the largest maximum absolute value in each feature. It does not shift/center the data, and thus does not destroy any sparsity.
New in version 2.0.0.
Examples
>>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([1.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> maScaler = MaxAbsScaler(outputCol="scaled") >>> maScaler.setInputCol("a") MaxAbsScaler... >>> model = maScaler.fit(df) >>> model.setOutputCol("scaledOutput") MaxAbsScalerModel... >>> model.transform(df).show() +-----+------------+ | a|scaledOutput| +-----+------------+ |[1.0]| [0.5]| |[2.0]| [1.0]| +-----+------------+ ... >>> scalerPath = temp_path + "/max-abs-scaler" >>> maScaler.save(scalerPath) >>> loadedMAScaler = MaxAbsScaler.load(scalerPath) >>> loadedMAScaler.getInputCol() == maScaler.getInputCol() True >>> loadedMAScaler.getOutputCol() == maScaler.getOutputCol() True >>> modelPath = temp_path + "/max-abs-scaler-model" >>> model.save(modelPath) >>> loadedModel = MaxAbsScalerModel.load(modelPath) >>> loadedModel.maxAbs == model.maxAbs True >>> loadedModel.transform(df).take(1) == model.transform(df).take(1) True
Methods
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
fit
(dataset[, params])Fits a model to the input dataset with optional parameters.
fitMultiple
(dataset, paramMaps)Fits a model to the input dataset for each param map in paramMaps.
Gets the value of inputCol or its default value.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
Gets the value of outputCol or its default value.
getParam
(paramName)Gets a param by its name.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set
(param, value)Sets a parameter in the embedded param map.
setInputCol
(value)Sets the value of
inputCol
.setOutputCol
(value)Sets the value of
outputCol
.setParams
(self, \*[, inputCol, outputCol])Sets params for this MaxAbsScaler.
write
()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
-
clear
(param)¶ Clears a param from the param map if it has been explicitly set.
-
copy
(extra=None)¶ Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
- extradict, optional
Extra parameters to copy to the new instance
- Returns
JavaParams
Copy of this instance
-
explainParam
(param)¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams
()¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap
(extra=None)¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
fit
(dataset, params=None)¶ Fits a model to the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset.
- paramsdict or list or tuple, optional
an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
- dataset
- Returns
Transformer
or a list ofTransformer
fitted model(s)
-
fitMultiple
(dataset, paramMaps)¶ Fits a model to the input dataset for each param map in paramMaps.
New in version 2.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame
input dataset.
- paramMaps
collections.abc.Sequence
A Sequence of param maps.
- dataset
- Returns
_FitMultipleIterator
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
-
getInputCol
()¶ Gets the value of inputCol or its default value.
-
getOrDefault
(param)¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getOutputCol
()¶ Gets the value of outputCol or its default value.
-
getParam
(paramName)¶ Gets a param by its name.
-
hasDefault
(param)¶ Checks whether a param has a default value.
-
hasParam
(paramName)¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined
(param)¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet
(param)¶ Checks whether a param is explicitly set by user.
-
classmethod
load
(path)¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
classmethod
read
()¶ Returns an MLReader instance for this class.
-
save
(path)¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set
(param, value)¶ Sets a parameter in the embedded param map.
-
setParams
(self, \*, inputCol=None, outputCol=None)[source]¶ Sets params for this MaxAbsScaler.
New in version 2.0.0.
-
write
()¶ Returns an MLWriter instance for this ML instance.
Attributes Documentation
-
inputCol
= Param(parent='undefined', name='inputCol', doc='input column name.')¶
-
outputCol
= Param(parent='undefined', name='outputCol', doc='output column name.')¶
-
params
¶ Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
-