spark.
apply
Applies a function that takes and returns a Spark column. It allows to natively apply a Spark function and column APIs with the Spark column internally used in Series or Index.
Note
It forces to lose the index and end up with using default index. It is preferred to use Series.spark.transform() or :meth:`DataFrame.spark.apply with specifying the inedx_col.
Series.spark.transform()
It does not require to have the same length of the input and output. However, it requires to create a new DataFrame internally which will require to set compute.ops_on_diff_frames to compute even with the same origin DataFrame that is expensive, whereas Series.spark.transform() does not require it.
Function to apply the function against the data by using Spark columns.
Examples
>>> from pyspark import pandas as ps >>> from pyspark.sql.functions import count, lit >>> df = ps.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, columns=["a", "b"]) >>> df a b 0 1 4 1 2 5 2 3 6
>>> df.a.spark.apply(lambda c: count(c)) 0 3 Name: a, dtype: int64
>>> df.a.spark.apply(lambda c: c + df.b.spark.column) 0 5 1 7 2 9 Name: a, dtype: int64