DataFrame.
sort_index
Sort object by labels (along an axis)
if not None, sort on values in specified index level(s)
Sort ascending vs. descending
if True, perform operation in-place
pandas-on-Spark does not allow specifying the sorting algorithm at the moment, default None
first puts NaNs at the beginning, last puts NaNs at the end. Not implemented for MultiIndex.
Examples
>>> df = ps.DataFrame({'A': [2, 1, np.nan]}, index=['b', 'a', np.nan])
>>> df.sort_index() A a 1.0 b 2.0 NaN NaN
>>> df.sort_index(ascending=False) A b 2.0 a 1.0 NaN NaN
>>> df.sort_index(na_position='first') A NaN NaN a 1.0 b 2.0
>>> df.sort_index(inplace=True) >>> df A a 1.0 b 2.0 NaN NaN
>>> df = ps.DataFrame({'A': range(4), 'B': range(4)[::-1]}, ... index=[['b', 'b', 'a', 'a'], [1, 0, 1, 0]], ... columns=['A', 'B'])
>>> df.sort_index() A B a 0 3 0 1 2 1 b 0 1 2 1 0 3
>>> df.sort_index(level=1) A B a 0 3 0 b 0 1 2 a 1 2 1 b 1 0 3
>>> df.sort_index(level=[1, 0]) A B a 0 3 0 b 0 1 2 a 1 2 1 b 1 0 3