ParamGridBuilder#
- class pyspark.ml.tuning.ParamGridBuilder[source]#
Builder for a param grid used in grid search-based model selection.
New in version 1.4.0.
Examples
>>> from pyspark.ml.classification import LogisticRegression >>> lr = LogisticRegression() >>> output = ParamGridBuilder() \ ... .baseOn({lr.labelCol: 'l'}) \ ... .baseOn([lr.predictionCol, 'p']) \ ... .addGrid(lr.regParam, [1.0, 2.0]) \ ... .addGrid(lr.maxIter, [1, 5]) \ ... .build() >>> expected = [ ... {lr.regParam: 1.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 2.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 1.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 2.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}] >>> len(output) == len(expected) True >>> all([m in expected for m in output]) True
Methods
addGrid
(param, values)Sets the given parameters in this grid to fixed values.
baseOn
(*args)Sets the given parameters in this grid to fixed values.
build
()Builds and returns all combinations of parameters specified by the param grid.
Methods Documentation
- addGrid(param, values)[source]#
Sets the given parameters in this grid to fixed values.
param must be an instance of Param associated with an instance of Params (such as Estimator or Transformer).
New in version 1.4.0.