public class L1Updater extends Updater
Instead of subgradient of the regularizer, the proximal operator for the L1 regularization is applied after the gradient step. This is known to result in better sparsity of the intermediate solution.
The corresponding proximal operator for the L1 norm is the soft-thresholding function. That is, each weight component is shrunk towards 0 by shrinkageVal.
If w > shrinkageVal, set weight component to w-shrinkageVal. If w < -shrinkageVal, set weight component to w+shrinkageVal. If -shrinkageVal < w < shrinkageVal, set weight component to 0.
Equivalently, set weight component to signum(w) * max(0.0, abs(w) - shrinkageVal)
Constructor and Description |
---|
L1Updater() |
public scala.Tuple2<Vector,Object> compute(Vector weightsOld, Vector gradient, double stepSize, int iter, double regParam)
Updater
compute
in class Updater
weightsOld
- - Column matrix of size dx1 where d is the number of features.gradient
- - Column matrix of size dx1 where d is the number of features.stepSize
- - step size across iterationsiter
- - Iteration numberregParam
- - Regularization parameter