public class RandomVectorRDD extends RDD<Vector>
Constructor and Description |
---|
RandomVectorRDD(SparkContext sc,
long size,
int vectorSize,
int numPartitions,
RandomDataGenerator<Object> rng,
long seed) |
Modifier and Type | Method and Description |
---|---|
scala.collection.Iterator<Vector> |
compute(Partition splitIn,
TaskContext context)
:: DeveloperApi ::
Implemented by subclasses to compute a given partition.
|
aggregate, cache, cartesian, checkpoint, checkpointData, coalesce, collect, collect, collectPartitions, computeOrReadCheckpoint, conf, context, count, countApprox, countApproxDistinct, countApproxDistinct, countByValue, countByValueApprox, creationSite, dependencies, distinct, distinct, doCheckpoint, doubleRDDToDoubleRDDFunctions, elementClassTag, filter, filterWith, first, flatMap, flatMapWith, fold, foreach, foreachPartition, foreachWith, getCheckpointFile, getCreationSite, getNarrowAncestors, getStorageLevel, glom, groupBy, groupBy, groupBy, id, intersection, intersection, intersection, isCheckpointed, isEmpty, iterator, keyBy, map, mapPartitions, mapPartitionsWithContext, mapPartitionsWithIndex, mapPartitionsWithSplit, mapWith, markCheckpointed, max, min, name, numericRDDToDoubleRDDFunctions, partitioner, partitions, persist, persist, pipe, pipe, pipe, preferredLocations, randomSplit, rddToAsyncRDDActions, rddToOrderedRDDFunctions, rddToPairRDDFunctions, rddToSequenceFileRDDFunctions, reduce, repartition, retag, retag, sample, saveAsObjectFile, saveAsTextFile, saveAsTextFile, setName, sortBy, sparkContext, subtract, subtract, subtract, take, takeOrdered, takeSample, toArray, toDebugString, toJavaRDD, toLocalIterator, top, toString, treeAggregate, treeReduce, union, unpersist, zip, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipWithIndex, zipWithUniqueId
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public RandomVectorRDD(SparkContext sc, long size, int vectorSize, int numPartitions, RandomDataGenerator<Object> rng, long seed)