public class LinearRegressionWithSGD extends GeneralizedLinearAlgorithm<LinearRegressionModel> implements scala.Serializable
Constructor and Description |
---|
LinearRegressionWithSGD()
Construct a LinearRegression object with default parameters: {stepSize: 1.0,
numIterations: 100, miniBatchFraction: 1.0}.
|
LinearRegressionWithSGD(double stepSize,
int numIterations,
double miniBatchFraction) |
Modifier and Type | Method and Description |
---|---|
GradientDescent |
optimizer()
The optimizer to solve the problem.
|
static LinearRegressionModel |
train(RDD<LabeledPoint> input,
int numIterations)
Train a LinearRegression model given an RDD of (label, features) pairs.
|
static LinearRegressionModel |
train(RDD<LabeledPoint> input,
int numIterations,
double stepSize)
Train a LinearRegression model given an RDD of (label, features) pairs.
|
static LinearRegressionModel |
train(RDD<LabeledPoint> input,
int numIterations,
double stepSize,
double miniBatchFraction)
Train a LinearRegression model given an RDD of (label, features) pairs.
|
static LinearRegressionModel |
train(RDD<LabeledPoint> input,
int numIterations,
double stepSize,
double miniBatchFraction,
Vector initialWeights)
Train a Linear Regression model given an RDD of (label, features) pairs.
|
run, run, setFeatureScaling, setIntercept, setValidateData
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public LinearRegressionWithSGD(double stepSize, int numIterations, double miniBatchFraction)
public LinearRegressionWithSGD()
public static LinearRegressionModel train(RDD<LabeledPoint> input, int numIterations, double stepSize, double miniBatchFraction, Vector initialWeights)
miniBatchFraction
fraction of the data to calculate a stochastic gradient. The weights used
in gradient descent are initialized using the initial weights provided.
input
- RDD of (label, array of features) pairs. Each pair describes a row of the data
matrix A as well as the corresponding right hand side label ynumIterations
- Number of iterations of gradient descent to run.stepSize
- Step size to be used for each iteration of gradient descent.miniBatchFraction
- Fraction of data to be used per iteration.initialWeights
- Initial set of weights to be used. Array should be equal in size to
the number of features in the data.public static LinearRegressionModel train(RDD<LabeledPoint> input, int numIterations, double stepSize, double miniBatchFraction)
miniBatchFraction
fraction of the data to calculate a stochastic gradient.
input
- RDD of (label, array of features) pairs. Each pair describes a row of the data
matrix A as well as the corresponding right hand side label ynumIterations
- Number of iterations of gradient descent to run.stepSize
- Step size to be used for each iteration of gradient descent.miniBatchFraction
- Fraction of data to be used per iteration.public static LinearRegressionModel train(RDD<LabeledPoint> input, int numIterations, double stepSize)
input
- RDD of (label, array of features) pairs. Each pair describes a row of the data
matrix A as well as the corresponding right hand side label ystepSize
- Step size to be used for each iteration of Gradient Descent.numIterations
- Number of iterations of gradient descent to run.public static LinearRegressionModel train(RDD<LabeledPoint> input, int numIterations)
input
- RDD of (label, array of features) pairs. Each pair describes a row of the data
matrix A as well as the corresponding right hand side label ynumIterations
- Number of iterations of gradient descent to run.public GradientDescent optimizer()
GeneralizedLinearAlgorithm
optimizer
in class GeneralizedLinearAlgorithm<LinearRegressionModel>