|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Object org.apache.spark.ml.PipelineStage org.apache.spark.ml.Estimator<M> org.apache.spark.ml.Predictor<Vector,GBTRegressor,GBTRegressionModel> org.apache.spark.ml.regression.GBTRegressor
public final class GBTRegressor
:: Experimental ::
Gradient-Boosted Trees (GBTs)
learning algorithm for regression.
It supports both continuous and categorical features.
Constructor Summary | |
---|---|
GBTRegressor()
|
|
GBTRegressor(String uid)
|
Method Summary | |
---|---|
GBTRegressor |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params. |
String |
getLossType()
|
Param<String> |
lossType()
Loss function which GBT tries to minimize. |
GBTRegressor |
setCacheNodeIds(boolean value)
|
GBTRegressor |
setCheckpointInterval(int value)
|
GBTRegressor |
setImpurity(String value)
The impurity setting is ignored for GBT models. |
GBTRegressor |
setLossType(String value)
|
GBTRegressor |
setMaxBins(int value)
|
GBTRegressor |
setMaxDepth(int value)
|
GBTRegressor |
setMaxIter(int value)
|
GBTRegressor |
setMaxMemoryInMB(int value)
|
GBTRegressor |
setMinInfoGain(double value)
|
GBTRegressor |
setMinInstancesPerNode(int value)
|
GBTRegressor |
setSeed(long value)
|
GBTRegressor |
setStepSize(double value)
|
GBTRegressor |
setSubsamplingRate(double value)
|
static String[] |
supportedLossTypes()
Accessor for supported loss settings: squared (L2), absolute (L1) |
String |
uid()
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map. |
Methods inherited from class org.apache.spark.ml.Predictor |
---|
fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchema |
Methods inherited from class org.apache.spark.ml.Estimator |
---|
fit, fit, fit, fit |
Methods inherited from class Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface org.apache.spark.Logging |
---|
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning |
Methods inherited from interface org.apache.spark.ml.param.Params |
---|
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, setDefault, shouldOwn, validateParams |
Constructor Detail |
---|
public GBTRegressor(String uid)
public GBTRegressor()
Method Detail |
---|
public static final String[] supportedLossTypes()
public String uid()
public GBTRegressor setMaxDepth(int value)
public GBTRegressor setMaxBins(int value)
public GBTRegressor setMinInstancesPerNode(int value)
public GBTRegressor setMinInfoGain(double value)
public GBTRegressor setMaxMemoryInMB(int value)
public GBTRegressor setCacheNodeIds(boolean value)
public GBTRegressor setCheckpointInterval(int value)
public GBTRegressor setImpurity(String value)
value
- (undocumented)
public GBTRegressor setSubsamplingRate(double value)
public GBTRegressor setSeed(long value)
public GBTRegressor setMaxIter(int value)
public GBTRegressor setStepSize(double value)
public Param<String> lossType()
public GBTRegressor setLossType(String value)
public String getLossType()
public GBTRegressor copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Predictor<Vector,GBTRegressor,GBTRegressionModel>
extra
- (undocumented)
defaultCopy()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |