|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Object org.apache.spark.ml.PipelineStage org.apache.spark.ml.Estimator<M> org.apache.spark.ml.Predictor<FeaturesType,Learner,M> org.apache.spark.ml.regression.LinearRegression
public class LinearRegression
:: Experimental :: Linear regression.
The learning objective is to minimize the squared error, with regularization. The specific squared error loss function used is: L = 1/2n ||A weights - y||^2^
This support multiple types of regularization: - none (a.k.a. ordinary least squares) - L2 (ridge regression) - L1 (Lasso) - L2 + L1 (elastic net)
Constructor Summary | |
---|---|
LinearRegression()
|
|
LinearRegression(String uid)
|
Method Summary | |
---|---|
LinearRegression |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params. |
LinearRegression |
setElasticNetParam(double value)
Set the ElasticNet mixing parameter. |
LinearRegression |
setMaxIter(int value)
Set the maximum number of iterations. |
LinearRegression |
setRegParam(double value)
Set the regularization parameter. |
LinearRegression |
setTol(double value)
Set the convergence tolerance of iterations. |
String |
uid()
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map. |
Methods inherited from class org.apache.spark.ml.Predictor |
---|
fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchema |
Methods inherited from class org.apache.spark.ml.Estimator |
---|
fit, fit, fit, fit |
Methods inherited from class Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface org.apache.spark.Logging |
---|
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning |
Methods inherited from interface org.apache.spark.ml.param.Params |
---|
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, setDefault, shouldOwn, validateParams |
Constructor Detail |
---|
public LinearRegression(String uid)
public LinearRegression()
Method Detail |
---|
public String uid()
public LinearRegression setRegParam(double value)
value
- (undocumented)
public LinearRegression setElasticNetParam(double value)
value
- (undocumented)
public LinearRegression setMaxIter(int value)
value
- (undocumented)
public LinearRegression setTol(double value)
value
- (undocumented)
public LinearRegression copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Predictor<Vector,LinearRegression,LinearRegressionModel>
extra
- (undocumented)
defaultCopy()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |