|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Object org.apache.spark.mllib.optimization.GradientDescent
public class GradientDescent
Class used to solve an optimization problem using Gradient Descent. param: gradient Gradient function to be used. param: updater Updater to be used to update weights after every iteration.
Method Summary | |
---|---|
Vector |
optimize(RDD<scala.Tuple2<Object,Vector>> data,
Vector initialWeights)
:: DeveloperApi :: Runs gradient descent on the given training data. |
static scala.Tuple2<Vector,double[]> |
runMiniBatchSGD(RDD<scala.Tuple2<Object,Vector>> data,
Gradient gradient,
Updater updater,
double stepSize,
int numIterations,
double regParam,
double miniBatchFraction,
Vector initialWeights)
Run stochastic gradient descent (SGD) in parallel using mini batches. |
GradientDescent |
setGradient(Gradient gradient)
Set the gradient function (of the loss function of one single data example) to be used for SGD. |
GradientDescent |
setMiniBatchFraction(double fraction)
:: Experimental :: Set fraction of data to be used for each SGD iteration. |
GradientDescent |
setNumIterations(int iters)
Set the number of iterations for SGD. |
GradientDescent |
setRegParam(double regParam)
Set the regularization parameter. |
GradientDescent |
setStepSize(double step)
Set the initial step size of SGD for the first step. |
GradientDescent |
setUpdater(Updater updater)
Set the updater function to actually perform a gradient step in a given direction. |
Methods inherited from class Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface org.apache.spark.Logging |
---|
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning |
Method Detail |
---|
public static scala.Tuple2<Vector,double[]> runMiniBatchSGD(RDD<scala.Tuple2<Object,Vector>> data, Gradient gradient, Updater updater, double stepSize, int numIterations, double regParam, double miniBatchFraction, Vector initialWeights)
data
- - Input data for SGD. RDD of the set of data examples, each of
the form (label, [feature values]).gradient
- - Gradient object (used to compute the gradient of the loss function of
one single data example)updater
- - Updater function to actually perform a gradient step in a given direction.stepSize
- - initial step size for the first stepnumIterations
- - number of iterations that SGD should be run.regParam
- - regularization parameterminiBatchFraction
- - fraction of the input data set that should be used for
one iteration of SGD. Default value 1.0.
initialWeights
- (undocumented)
public GradientDescent setStepSize(double step)
step
- (undocumented)
public GradientDescent setMiniBatchFraction(double fraction)
fraction
- (undocumented)
public GradientDescent setNumIterations(int iters)
iters
- (undocumented)
public GradientDescent setRegParam(double regParam)
regParam
- (undocumented)
public GradientDescent setGradient(Gradient gradient)
gradient
- (undocumented)
public GradientDescent setUpdater(Updater updater)
updater
- (undocumented)
public Vector optimize(RDD<scala.Tuple2<Object,Vector>> data, Vector initialWeights)
optimize
in interface Optimizer
data
- training datainitialWeights
- initial weights
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |