public class DecisionTreeRegressor extends Predictor<Vector,DecisionTreeRegressor,DecisionTreeRegressionModel> implements DefaultParamsWritable
Decision tree
learning algorithm
for regression.
It supports both continuous and categorical features.Constructor and Description |
---|
DecisionTreeRegressor() |
DecisionTreeRegressor(String uid) |
Modifier and Type | Method and Description |
---|---|
static BooleanParam |
cacheNodeIds() |
static IntParam |
checkpointInterval() |
static Params |
clear(Param<?> param) |
DecisionTreeRegressor |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
featuresCol() |
Param<String> |
featuresCol()
Param for features column name.
|
static M |
fit(Dataset<?> dataset) |
static M |
fit(Dataset<?> dataset,
ParamMap paramMap) |
static scala.collection.Seq<M> |
fit(Dataset<?> dataset,
ParamMap[] paramMaps) |
static M |
fit(Dataset<?> dataset,
ParamPair<?> firstParamPair,
ParamPair<?>... otherParamPairs) |
static M |
fit(Dataset<?> dataset,
ParamPair<?> firstParamPair,
scala.collection.Seq<ParamPair<?>> otherParamPairs) |
static <T> scala.Option<T> |
get(Param<T> param) |
static boolean |
getCacheNodeIds() |
static int |
getCheckpointInterval() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getFeaturesCol() |
String |
getFeaturesCol() |
static String |
getImpurity() |
static String |
getLabelCol() |
String |
getLabelCol() |
static int |
getMaxBins() |
static int |
getMaxDepth() |
static int |
getMaxMemoryInMB() |
static double |
getMinInfoGain() |
static int |
getMinInstancesPerNode() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
String |
getPredictionCol() |
static long |
getSeed() |
static String |
getVarianceCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static Param<String> |
impurity() |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static Param<String> |
labelCol() |
Param<String> |
labelCol()
Param for label column name.
|
static DecisionTreeRegressor |
load(String path) |
static IntParam |
maxBins() |
static IntParam |
maxDepth() |
static IntParam |
maxMemoryInMB() |
static DoubleParam |
minInfoGain() |
static IntParam |
minInstancesPerNode() |
static Param<?>[] |
params() |
static Param<String> |
predictionCol() |
Param<String> |
predictionCol()
Param for prediction column name.
|
static void |
save(String path) |
static LongParam |
seed() |
static <T> Params |
set(Param<T> param,
T value) |
DecisionTreeRegressor |
setCacheNodeIds(boolean value) |
DecisionTreeRegressor |
setCheckpointInterval(int value) |
static Learner |
setFeaturesCol(String value) |
DecisionTreeRegressor |
setImpurity(String value) |
static Learner |
setLabelCol(String value) |
DecisionTreeRegressor |
setMaxBins(int value) |
DecisionTreeRegressor |
setMaxDepth(int value) |
DecisionTreeRegressor |
setMaxMemoryInMB(int value) |
DecisionTreeRegressor |
setMinInfoGain(double value) |
DecisionTreeRegressor |
setMinInstancesPerNode(int value) |
static Learner |
setPredictionCol(String value) |
DecisionTreeRegressor |
setSeed(long value) |
DecisionTreeRegressor |
setVarianceCol(String value) |
static String[] |
supportedImpurities()
Accessor for supported impurities: variance
|
static String |
toString() |
static StructType |
transformSchema(StructType schema) |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
static void |
validateParams() |
static Param<String> |
varianceCol() |
static MLWriter |
write() |
fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchema
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
write
save
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
toString
public DecisionTreeRegressor(String uid)
public DecisionTreeRegressor()
public static final String[] supportedImpurities()
public static DecisionTreeRegressor load(String path)
public static String toString()
public static Param<?>[] params()
public static void validateParams()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static M fit(Dataset<?> dataset, ParamPair<?> firstParamPair, scala.collection.Seq<ParamPair<?>> otherParamPairs)
public static M fit(Dataset<?> dataset, ParamPair<?> firstParamPair, ParamPair<?>... otherParamPairs)
public static final Param<String> labelCol()
public static final String getLabelCol()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static Learner setLabelCol(String value)
public static Learner setFeaturesCol(String value)
public static Learner setPredictionCol(String value)
public static M fit(Dataset<?> dataset)
public static StructType transformSchema(StructType schema)
public static final IntParam checkpointInterval()
public static final int getCheckpointInterval()
public static final LongParam seed()
public static final long getSeed()
public static final IntParam maxDepth()
public static final IntParam maxBins()
public static final IntParam minInstancesPerNode()
public static final DoubleParam minInfoGain()
public static final IntParam maxMemoryInMB()
public static final BooleanParam cacheNodeIds()
public static final int getMaxDepth()
public static final int getMaxBins()
public static final int getMinInstancesPerNode()
public static final double getMinInfoGain()
public static final int getMaxMemoryInMB()
public static final boolean getCacheNodeIds()
public static final Param<String> impurity()
public static final String getImpurity()
public static final Param<String> varianceCol()
public static final String getVarianceCol()
public static void save(String path) throws java.io.IOException
java.io.IOException
public static MLWriter write()
public String uid()
Identifiable
uid
in interface Identifiable
public DecisionTreeRegressor setMaxDepth(int value)
public DecisionTreeRegressor setMaxBins(int value)
public DecisionTreeRegressor setMinInstancesPerNode(int value)
public DecisionTreeRegressor setMinInfoGain(double value)
public DecisionTreeRegressor setMaxMemoryInMB(int value)
public DecisionTreeRegressor setCacheNodeIds(boolean value)
public DecisionTreeRegressor setCheckpointInterval(int value)
public DecisionTreeRegressor setImpurity(String value)
public DecisionTreeRegressor setSeed(long value)
public DecisionTreeRegressor setVarianceCol(String value)
public DecisionTreeRegressor copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Predictor<Vector,DecisionTreeRegressor,DecisionTreeRegressionModel>
extra
- (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.public Param<String> labelCol()
public String getLabelCol()
public Param<String> featuresCol()
public String getFeaturesCol()
public Param<String> predictionCol()
public String getPredictionCol()