public class RelationalGroupedDataset
extends Object
DataFrame
, created by groupBy
,
cube
or rollup
(and also pivot
).
The main method is the agg
function, which has multiple variants. This class also contains
some first-order statistics such as mean
, sum
for convenience.
GroupedData
in Spark 1.x.
Modifier and Type | Class and Description |
---|---|
static class |
RelationalGroupedDataset.CubeType$
To indicate it's the CUBE
|
static class |
RelationalGroupedDataset.GroupByType$
To indicate it's the GroupBy
|
static class |
RelationalGroupedDataset.PivotType$ |
static class |
RelationalGroupedDataset.RollupType$
To indicate it's the ROLLUP
|
Modifier and Type | Method and Description |
---|---|
Dataset<Row> |
agg(Column expr,
Column... exprs)
Compute aggregates by specifying a series of aggregate columns.
|
Dataset<Row> |
agg(Column expr,
scala.collection.Seq<Column> exprs)
Compute aggregates by specifying a series of aggregate columns.
|
Dataset<Row> |
agg(scala.collection.immutable.Map<String,String> exprs)
(Scala-specific) Compute aggregates by specifying a map from column name to
aggregate methods.
|
Dataset<Row> |
agg(java.util.Map<String,String> exprs)
(Java-specific) Compute aggregates by specifying a map from column name to
aggregate methods.
|
Dataset<Row> |
agg(scala.Tuple2<String,String> aggExpr,
scala.collection.Seq<scala.Tuple2<String,String>> aggExprs)
(Scala-specific) Compute aggregates by specifying the column names and
aggregate methods.
|
static RelationalGroupedDataset |
apply(Dataset<Row> df,
scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Expression> groupingExprs,
org.apache.spark.sql.RelationalGroupedDataset.GroupType groupType) |
Dataset<Row> |
avg(scala.collection.Seq<String> colNames)
Compute the mean value for each numeric columns for each group.
|
Dataset<Row> |
avg(String... colNames)
Compute the mean value for each numeric columns for each group.
|
Dataset<Row> |
count()
Count the number of rows for each group.
|
Dataset<Row> |
max(scala.collection.Seq<String> colNames)
Compute the max value for each numeric columns for each group.
|
Dataset<Row> |
max(String... colNames)
Compute the max value for each numeric columns for each group.
|
Dataset<Row> |
mean(scala.collection.Seq<String> colNames)
Compute the average value for each numeric columns for each group.
|
Dataset<Row> |
mean(String... colNames)
Compute the average value for each numeric columns for each group.
|
Dataset<Row> |
min(scala.collection.Seq<String> colNames)
Compute the min value for each numeric column for each group.
|
Dataset<Row> |
min(String... colNames)
Compute the min value for each numeric column for each group.
|
RelationalGroupedDataset |
pivot(String pivotColumn)
Pivots a column of the current
DataFrame and performs the specified aggregation. |
RelationalGroupedDataset |
pivot(String pivotColumn,
java.util.List<Object> values)
(Java-specific) Pivots a column of the current
DataFrame and performs the specified
aggregation. |
RelationalGroupedDataset |
pivot(String pivotColumn,
scala.collection.Seq<Object> values)
Pivots a column of the current
DataFrame and performs the specified aggregation. |
Dataset<Row> |
sum(scala.collection.Seq<String> colNames)
Compute the sum for each numeric columns for each group.
|
Dataset<Row> |
sum(String... colNames)
Compute the sum for each numeric columns for each group.
|
String |
toString() |
public static RelationalGroupedDataset apply(Dataset<Row> df, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Expression> groupingExprs, org.apache.spark.sql.RelationalGroupedDataset.GroupType groupType)
public Dataset<Row> agg(Column expr, Column... exprs)
spark.sql.retainGroupColumns
to false.
The available aggregate methods are defined in functions
.
// Selects the age of the oldest employee and the aggregate expense for each department
// Scala:
import org.apache.spark.sql.functions._
df.groupBy("department").agg(max("age"), sum("expense"))
// Java:
import static org.apache.spark.sql.functions.*;
df.groupBy("department").agg(max("age"), sum("expense"));
Note that before Spark 1.4, the default behavior is to NOT retain grouping columns. To change
to that behavior, set config variable spark.sql.retainGroupColumns
to false
.
// Scala, 1.3.x:
df.groupBy("department").agg($"department", max("age"), sum("expense"))
// Java, 1.3.x:
df.groupBy("department").agg(col("department"), max("age"), sum("expense"));
expr
- (undocumented)exprs
- (undocumented)public Dataset<Row> mean(String... colNames)
avg
.
The resulting DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the average values for them.
colNames
- (undocumented)public Dataset<Row> max(String... colNames)
DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the max values for them.
colNames
- (undocumented)public Dataset<Row> avg(String... colNames)
DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the mean values for them.
colNames
- (undocumented)public Dataset<Row> min(String... colNames)
DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the min values for them.
colNames
- (undocumented)public Dataset<Row> sum(String... colNames)
DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the sum for them.
colNames
- (undocumented)public Dataset<Row> agg(scala.Tuple2<String,String> aggExpr, scala.collection.Seq<scala.Tuple2<String,String>> aggExprs)
DataFrame
will also contain the grouping columns.
The available aggregate methods are avg
, max
, min
, sum
, count
.
// Selects the age of the oldest employee and the aggregate expense for each department
df.groupBy("department").agg(
"age" -> "max",
"expense" -> "sum"
)
aggExpr
- (undocumented)aggExprs
- (undocumented)public Dataset<Row> agg(scala.collection.immutable.Map<String,String> exprs)
DataFrame
will also contain the grouping columns.
The available aggregate methods are avg
, max
, min
, sum
, count
.
// Selects the age of the oldest employee and the aggregate expense for each department
df.groupBy("department").agg(Map(
"age" -> "max",
"expense" -> "sum"
))
exprs
- (undocumented)public Dataset<Row> agg(java.util.Map<String,String> exprs)
DataFrame
will also contain the grouping columns.
The available aggregate methods are avg
, max
, min
, sum
, count
.
// Selects the age of the oldest employee and the aggregate expense for each department
import com.google.common.collect.ImmutableMap;
df.groupBy("department").agg(ImmutableMap.of("age", "max", "expense", "sum"));
exprs
- (undocumented)public Dataset<Row> agg(Column expr, scala.collection.Seq<Column> exprs)
spark.sql.retainGroupColumns
to false.
The available aggregate methods are defined in functions
.
// Selects the age of the oldest employee and the aggregate expense for each department
// Scala:
import org.apache.spark.sql.functions._
df.groupBy("department").agg(max("age"), sum("expense"))
// Java:
import static org.apache.spark.sql.functions.*;
df.groupBy("department").agg(max("age"), sum("expense"));
Note that before Spark 1.4, the default behavior is to NOT retain grouping columns. To change
to that behavior, set config variable spark.sql.retainGroupColumns
to false
.
// Scala, 1.3.x:
df.groupBy("department").agg($"department", max("age"), sum("expense"))
// Java, 1.3.x:
df.groupBy("department").agg(col("department"), max("age"), sum("expense"));
expr
- (undocumented)exprs
- (undocumented)public Dataset<Row> count()
DataFrame
will also contain the grouping columns.
public Dataset<Row> mean(scala.collection.Seq<String> colNames)
avg
.
The resulting DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the average values for them.
colNames
- (undocumented)public Dataset<Row> max(scala.collection.Seq<String> colNames)
DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the max values for them.
colNames
- (undocumented)public Dataset<Row> avg(scala.collection.Seq<String> colNames)
DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the mean values for them.
colNames
- (undocumented)public Dataset<Row> min(scala.collection.Seq<String> colNames)
DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the min values for them.
colNames
- (undocumented)public Dataset<Row> sum(scala.collection.Seq<String> colNames)
DataFrame
will also contain the grouping columns.
When specified columns are given, only compute the sum for them.
colNames
- (undocumented)public RelationalGroupedDataset pivot(String pivotColumn)
DataFrame
and performs the specified aggregation.
There are two versions of pivot
function: one that requires the caller to specify the list
of distinct values to pivot on, and one that does not. The latter is more concise but less
efficient, because Spark needs to first compute the list of distinct values internally.
// Compute the sum of earnings for each year by course with each course as a separate column
df.groupBy("year").pivot("course", Seq("dotNET", "Java")).sum("earnings")
// Or without specifying column values (less efficient)
df.groupBy("year").pivot("course").sum("earnings")
pivotColumn
- Name of the column to pivot.public RelationalGroupedDataset pivot(String pivotColumn, scala.collection.Seq<Object> values)
DataFrame
and performs the specified aggregation.
There are two versions of pivot function: one that requires the caller to specify the list
of distinct values to pivot on, and one that does not. The latter is more concise but less
efficient, because Spark needs to first compute the list of distinct values internally.
// Compute the sum of earnings for each year by course with each course as a separate column
df.groupBy("year").pivot("course", Seq("dotNET", "Java")).sum("earnings")
// Or without specifying column values (less efficient)
df.groupBy("year").pivot("course").sum("earnings")
pivotColumn
- Name of the column to pivot.values
- List of values that will be translated to columns in the output DataFrame.public RelationalGroupedDataset pivot(String pivotColumn, java.util.List<Object> values)
DataFrame
and performs the specified
aggregation.
There are two versions of pivot function: one that requires the caller to specify the list of distinct values to pivot on, and one that does not. The latter is more concise but less efficient, because Spark needs to first compute the list of distinct values internally.
// Compute the sum of earnings for each year by course with each course as a separate column
df.groupBy("year").pivot("course", Arrays.<Object>asList("dotNET", "Java")).sum("earnings");
// Or without specifying column values (less efficient)
df.groupBy("year").pivot("course").sum("earnings");
pivotColumn
- Name of the column to pivot.values
- List of values that will be translated to columns in the output DataFrame.public String toString()
toString
in class Object