public final class OneVsRest extends Estimator<OneVsRestModel> implements MLWritable
Modifier and Type | Method and Description |
---|---|
static Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> |
classifier() |
Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> |
classifier()
param for the base binary classifier that we reduce multiclass classification into.
|
static Params |
clear(Param<?> param) |
OneVsRest |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
featuresCol() |
OneVsRestModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static <T> scala.Option<T> |
get(Param<T> param) |
static Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>> |
getClassifier() |
Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>> |
getClassifier() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getFeaturesCol() |
static String |
getLabelCol() |
static <T> T |
getOrDefault(Param<T> param) |
static int |
getParallelism() |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
static String |
getRawPredictionCol() |
static String |
getWeightCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static Param<String> |
labelCol() |
static OneVsRest |
load(String path) |
static IntParam |
parallelism() |
static Param<?>[] |
params() |
static Param<String> |
predictionCol() |
static Param<String> |
rawPredictionCol() |
static MLReader<OneVsRest> |
read() |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
OneVsRest |
setClassifier(Classifier<?,?,?> value) |
OneVsRest |
setFeaturesCol(String value) |
OneVsRest |
setLabelCol(String value) |
OneVsRest |
setParallelism(int value)
The implementation of parallel one vs.
|
OneVsRest |
setPredictionCol(String value) |
OneVsRest |
setRawPredictionCol(String value) |
OneVsRest |
setWeightCol(String value)
Sets the value of param
weightCol . |
static String |
toString() |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
static Param<String> |
weightCol() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getRawPredictionCol, rawPredictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
getWeightCol, weightCol
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static OneVsRest load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static final Param<String> labelCol()
public static final String getLabelCol()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static final Param<String> rawPredictionCol()
public static final String getRawPredictionCol()
public static final Param<String> weightCol()
public static final String getWeightCol()
public static Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> classifier()
public static Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>> getClassifier()
public static IntParam parallelism()
public static int getParallelism()
public static void save(String path) throws java.io.IOException
java.io.IOException
public String uid()
Identifiable
uid
in interface Identifiable
public OneVsRest setClassifier(Classifier<?,?,?> value)
public OneVsRest setLabelCol(String value)
public OneVsRest setFeaturesCol(String value)
public OneVsRest setPredictionCol(String value)
public OneVsRest setRawPredictionCol(String value)
public OneVsRest setParallelism(int value)
value
- (undocumented)public OneVsRest setWeightCol(String value)
weightCol
.
This is ignored if weight is not supported by classifier
.
If this is not set or empty, we treat all instance weights as 1.0.
Default is not set, so all instances have weight one.
value
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public OneVsRestModel fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<OneVsRestModel>
dataset
- (undocumented)public OneVsRest copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<OneVsRestModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> classifier()
OneVsRest
.public Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>> getClassifier()
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)