public class GeneralizedLinearRegression extends Predictor<FeaturesType,Learner,M> implements GeneralizedLinearRegressionBase, DefaultParamsWritable, Logging
Fit a Generalized Linear Model (see Generalized linear model (Wikipedia)) specified by giving a symbolic description of the linear predictor (link function) and a description of the error distribution (family). It supports "gaussian", "binomial", "poisson", "gamma" and "tweedie" as family. Valid link functions for each family is listed below. The first link function of each family is the default one. - "gaussian" : "identity", "log", "inverse" - "binomial" : "logit", "probit", "cloglog" - "poisson" : "log", "identity", "sqrt" - "gamma" : "inverse", "identity", "log" - "tweedie" : power link function specified through "linkPower". The default link power in the tweedie family is 1 - variancePower.
Modifier and Type | Class and Description |
---|---|
static class |
GeneralizedLinearRegression.Binomial$
Binomial exponential family distribution.
|
static class |
GeneralizedLinearRegression.CLogLog$ |
static class |
GeneralizedLinearRegression.Family$ |
static class |
GeneralizedLinearRegression.FamilyAndLink$ |
static class |
GeneralizedLinearRegression.Gamma$
Gamma exponential family distribution.
|
static class |
GeneralizedLinearRegression.Gaussian$
Gaussian exponential family distribution.
|
static class |
GeneralizedLinearRegression.Identity$ |
static class |
GeneralizedLinearRegression.Inverse$ |
static class |
GeneralizedLinearRegression.Link$ |
static class |
GeneralizedLinearRegression.Log$ |
static class |
GeneralizedLinearRegression.Logit$ |
static class |
GeneralizedLinearRegression.Poisson$
Poisson exponential family distribution.
|
static class |
GeneralizedLinearRegression.Probit$ |
static class |
GeneralizedLinearRegression.Sqrt$ |
static class |
GeneralizedLinearRegression.Tweedie$ |
Constructor and Description |
---|
GeneralizedLinearRegression() |
GeneralizedLinearRegression(String uid) |
Modifier and Type | Method and Description |
---|---|
GeneralizedLinearRegression |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static GeneralizedLinearRegression |
load(String path) |
static MLReader<T> |
read() |
GeneralizedLinearRegression |
setFamily(String value)
Sets the value of param
family . |
GeneralizedLinearRegression |
setFitIntercept(boolean value)
Sets if we should fit the intercept.
|
GeneralizedLinearRegression |
setLink(String value)
Sets the value of param
link . |
GeneralizedLinearRegression |
setLinkPower(double value)
Sets the value of param
linkPower . |
GeneralizedLinearRegression |
setLinkPredictionCol(String value)
Sets the link prediction (linear predictor) column name.
|
GeneralizedLinearRegression |
setMaxIter(int value)
Sets the maximum number of iterations (applicable for solver "irls").
|
GeneralizedLinearRegression |
setOffsetCol(String value)
Sets the value of param
offsetCol . |
GeneralizedLinearRegression |
setRegParam(double value)
Sets the regularization parameter for L2 regularization.
|
GeneralizedLinearRegression |
setSolver(String value)
Sets the solver algorithm used for optimization.
|
GeneralizedLinearRegression |
setTol(double value)
Sets the convergence tolerance of iterations.
|
GeneralizedLinearRegression |
setVariancePower(double value)
Sets the value of param
variancePower . |
GeneralizedLinearRegression |
setWeightCol(String value)
Sets the value of param
weightCol . |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
fit, setFeaturesCol, setLabelCol, setPredictionCol, transformSchema
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
family, getFamily, getLink, getLinkPower, getLinkPredictionCol, getOffsetCol, getVariancePower, hasLinkPredictionCol, hasOffsetCol, hasWeightCol, link, linkPower, linkPredictionCol, offsetCol, solver, validateAndTransformSchema, variancePower
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
fitIntercept, getFitIntercept
getMaxIter, maxIter
getRegParam, regParam
getWeightCol, weightCol
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
write
save
public GeneralizedLinearRegression(String uid)
public GeneralizedLinearRegression()
public static GeneralizedLinearRegression load(String path)
public static MLReader<T> read()
public String uid()
Identifiable
uid
in interface Identifiable
public GeneralizedLinearRegression setFamily(String value)
family
.
Default is "gaussian".
value
- (undocumented)public GeneralizedLinearRegression setVariancePower(double value)
variancePower
.
Used only when family is "tweedie".
Default is 0.0, which corresponds to the "gaussian" family.
value
- (undocumented)public GeneralizedLinearRegression setLinkPower(double value)
linkPower
.
Used only when family is "tweedie".
value
- (undocumented)public GeneralizedLinearRegression setLink(String value)
link
.
Used only when family is not "tweedie".
value
- (undocumented)public GeneralizedLinearRegression setFitIntercept(boolean value)
value
- (undocumented)public GeneralizedLinearRegression setMaxIter(int value)
value
- (undocumented)public GeneralizedLinearRegression setTol(double value)
value
- (undocumented)public GeneralizedLinearRegression setRegParam(double value)
$$ 0.5 * regParam * L2norm(coefficients)^2 $$Default is 0.0.
value
- (undocumented)public GeneralizedLinearRegression setWeightCol(String value)
weightCol
.
If this is not set or empty, we treat all instance weights as 1.0.
Default is not set, so all instances have weight one.
In the Binomial family, weights correspond to number of trials and should be integer.
Non-integer weights are rounded to integer in AIC calculation.
value
- (undocumented)public GeneralizedLinearRegression setOffsetCol(String value)
offsetCol
.
If this is not set or empty, we treat all instance offsets as 0.0.
Default is not set, so all instances have offset 0.0.
value
- (undocumented)public GeneralizedLinearRegression setSolver(String value)
value
- (undocumented)public GeneralizedLinearRegression setLinkPredictionCol(String value)
value
- (undocumented)public GeneralizedLinearRegression copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Predictor<Vector,GeneralizedLinearRegression,GeneralizedLinearRegressionModel>
extra
- (undocumented)