public class StandardScaler extends Estimator<StandardScalerModel> implements StandardScalerParams, DefaultParamsWritable
The "unit std" is computed using the corrected sample standard deviation, which is computed as the square root of the unbiased sample variance.
Constructor and Description |
---|
StandardScaler() |
StandardScaler(String uid) |
Modifier and Type | Method and Description |
---|---|
StandardScaler |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
StandardScalerModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static StandardScaler |
load(String path) |
static MLReader<T> |
read() |
StandardScaler |
setInputCol(String value) |
StandardScaler |
setOutputCol(String value) |
StandardScaler |
setWithMean(boolean value) |
StandardScaler |
setWithStd(boolean value) |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getWithMean, getWithStd, validateAndTransformSchema, withMean, withStd
getInputCol, inputCol
getOutputCol, outputCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
write
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public StandardScaler(String uid)
public StandardScaler()
public static StandardScaler load(String path)
public static MLReader<T> read()
public String uid()
Identifiable
uid
in interface Identifiable
public StandardScaler setInputCol(String value)
public StandardScaler setOutputCol(String value)
public StandardScaler setWithMean(boolean value)
public StandardScaler setWithStd(boolean value)
public StandardScalerModel fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<StandardScalerModel>
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public StandardScaler copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<StandardScalerModel>
extra
- (undocumented)