public class LinearRegressionModel extends RegressionModel<Vector,LinearRegressionModel> implements LinearRegressionParams, GeneralMLWritable
LinearRegression
.Modifier and Type | Method and Description |
---|---|
Vector |
coefficients() |
LinearRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
LinearRegressionSummary |
evaluate(Dataset<?> dataset)
Evaluates the model on a test dataset.
|
boolean |
hasSummary()
Indicates whether a training summary exists for this model instance.
|
double |
intercept() |
static LinearRegressionModel |
load(String path) |
int |
numFeatures()
Returns the number of features the model was trained on.
|
double |
predict(Vector features)
Predict label for the given features.
|
static MLReader<LinearRegressionModel> |
read() |
double |
scale() |
LinearRegressionTrainingSummary |
summary()
Gets summary (e.g.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
GeneralMLWriter |
write()
Returns a
GeneralMLWriter instance for this ML instance. |
setFeaturesCol, setPredictionCol, transform, transformSchema
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
epsilon, getEpsilon, loss, solver, validateAndTransformSchema
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
getRegParam, regParam
elasticNetParam, getElasticNetParam
getMaxIter, maxIter
fitIntercept, getFitIntercept
getStandardization, standardization
getWeightCol, weightCol
aggregationDepth, getAggregationDepth
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static MLReader<LinearRegressionModel> read()
public static LinearRegressionModel load(String path)
public String uid()
Identifiable
uid
in interface Identifiable
public Vector coefficients()
public double intercept()
public double scale()
public int numFeatures()
PredictionModel
numFeatures
in class PredictionModel<Vector,LinearRegressionModel>
public LinearRegressionTrainingSummary summary()
trainingSummary == None
.public boolean hasSummary()
public LinearRegressionSummary evaluate(Dataset<?> dataset)
dataset
- Test dataset to evaluate model on.public double predict(Vector features)
PredictionModel
transform()
and output predictionCol
.predict
in class PredictionModel<Vector,LinearRegressionModel>
features
- (undocumented)public LinearRegressionModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<LinearRegressionModel>
extra
- (undocumented)public GeneralMLWriter write()
GeneralMLWriter
instance for this ML instance.
For LinearRegressionModel
, this does NOT currently save the training summary
.
An option to save summary
may be added in the future.
This also does not save the parent
currently.
write
in interface GeneralMLWritable
write
in interface MLWritable