public class GaussianMixtureModel extends Model<GaussianMixtureModel> implements GaussianMixtureParams, MLWritable
param: weights Weight for each Gaussian distribution in the mixture.
This is a multinomial probability distribution over the k Gaussians,
where weights(i) is the weight for Gaussian i, and weights sum to 1.
param: gaussians Array of MultivariateGaussian
where gaussians(i) represents
the Multivariate Gaussian (Normal) Distribution for Gaussian i
Modifier and Type | Method and Description |
---|---|
GaussianMixtureModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
MultivariateGaussian[] |
gaussians() |
Dataset<Row> |
gaussiansDF()
Retrieve Gaussian distributions as a DataFrame.
|
boolean |
hasSummary()
Return true if there exists summary of model.
|
static GaussianMixtureModel |
load(String path) |
static MLReader<GaussianMixtureModel> |
read() |
GaussianMixtureModel |
setFeaturesCol(String value) |
GaussianMixtureModel |
setPredictionCol(String value) |
GaussianMixtureModel |
setProbabilityCol(String value) |
GaussianMixtureSummary |
summary()
Gets summary of model on training set.
|
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
double[] |
weights() |
MLWriter |
write()
Returns a
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getK, k, validateAndTransformSchema
getMaxIter, maxIter
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
getProbabilityCol, probabilityCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static MLReader<GaussianMixtureModel> read()
public static GaussianMixtureModel load(String path)
public String uid()
Identifiable
uid
in interface Identifiable
public double[] weights()
public MultivariateGaussian[] gaussians()
public GaussianMixtureModel setFeaturesCol(String value)
public GaussianMixtureModel setPredictionCol(String value)
public GaussianMixtureModel setProbabilityCol(String value)
public GaussianMixtureModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<GaussianMixtureModel>
extra
- (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Dataset<Row> gaussiansDF()
root
|-- mean: vector (nullable = true)
|-- cov: matrix (nullable = true)
public MLWriter write()
MLWriter
instance for this ML instance.
For GaussianMixtureModel
, this does NOT currently save the training summary
.
An option to save summary
may be added in the future.
write
in interface MLWritable
public boolean hasSummary()
public GaussianMixtureSummary summary()
trainingSummary == None
.