Packages

class IsotonicRegressionModel extends Model[IsotonicRegressionModel] with IsotonicRegressionBase with MLWritable

Model fitted by IsotonicRegression. Predicts using a piecewise linear function.

For detailed rules see org.apache.spark.mllib.regression.IsotonicRegressionModel.predict().

Annotations
@Since( "1.5.0" )
Source
IsotonicRegression.scala
Linear Supertypes
MLWritable, IsotonicRegressionBase, HasWeightCol, HasPredictionCol, HasLabelCol, HasFeaturesCol, Model[IsotonicRegressionModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. IsotonicRegressionModel
  2. MLWritable
  3. IsotonicRegressionBase
  4. HasWeightCol
  5. HasPredictionCol
  6. HasLabelCol
  7. HasFeaturesCol
  8. Model
  9. Transformer
  10. PipelineStage
  11. Logging
  12. Params
  13. Serializable
  14. Serializable
  15. Identifiable
  16. AnyRef
  17. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. def boundaries: Vector

    Boundaries in increasing order for which predictions are known.

    Boundaries in increasing order for which predictions are known.

    Annotations
    @Since( "2.0.0" )
  7. final def clear(param: Param[_]): IsotonicRegressionModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  8. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  9. def copy(extra: ParamMap): IsotonicRegressionModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    IsotonicRegressionModelModelTransformerPipelineStageParams
    Annotations
    @Since( "1.5.0" )
  10. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  11. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  15. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  16. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  17. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  18. def extractWeightedLabeledPoints(dataset: Dataset[_]): RDD[(Double, Double, Double)]

    Extracts (label, feature, weight) from input dataset.

    Extracts (label, feature, weight) from input dataset.

    Attributes
    protected[ml]
    Definition Classes
    IsotonicRegressionBase
  19. final val featureIndex: IntParam

    Param for the index of the feature if featuresCol is a vector column (default: 0), no effect otherwise.

    Param for the index of the feature if featuresCol is a vector column (default: 0), no effect otherwise.

    Definition Classes
    IsotonicRegressionBase
  20. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  21. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  23. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  24. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  25. final def getFeatureIndex: Int

    Definition Classes
    IsotonicRegressionBase
  26. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  27. final def getIsotonic: Boolean

    Definition Classes
    IsotonicRegressionBase
  28. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  29. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  30. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  31. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  32. final def getWeightCol: String

    Definition Classes
    HasWeightCol
  33. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  34. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  35. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  36. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  37. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  38. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  39. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  40. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  41. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  42. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  43. final val isotonic: BooleanParam

    Param for whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false).

    Param for whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true

    Definition Classes
    IsotonicRegressionBase
  44. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  45. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  46. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  47. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  48. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  49. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  50. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  51. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  52. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  53. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  54. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  55. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  56. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  57. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  58. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  59. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  60. val numFeatures: Int
    Annotations
    @Since( "3.0.0" )
  61. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  62. var parent: Estimator[IsotonicRegressionModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  63. def predict(value: Double): Double
    Annotations
    @Since( "3.0.0" )
  64. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  65. def predictions: Vector

    Predictions associated with the boundaries at the same index, monotone because of isotonic regression.

    Predictions associated with the boundaries at the same index, monotone because of isotonic regression.

    Annotations
    @Since( "2.0.0" )
  66. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  67. final def set(paramPair: ParamPair[_]): IsotonicRegressionModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  68. final def set(param: String, value: Any): IsotonicRegressionModel.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  69. final def set[T](param: Param[T], value: T): IsotonicRegressionModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  70. final def setDefault(paramPairs: ParamPair[_]*): IsotonicRegressionModel.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  71. final def setDefault[T](param: Param[T], value: T): IsotonicRegressionModel.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  72. def setFeatureIndex(value: Int): IsotonicRegressionModel.this.type

    Annotations
    @Since( "1.5.0" )
  73. def setFeaturesCol(value: String): IsotonicRegressionModel.this.type

    Annotations
    @Since( "1.5.0" )
  74. def setParent(parent: Estimator[IsotonicRegressionModel]): IsotonicRegressionModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  75. def setPredictionCol(value: String): IsotonicRegressionModel.this.type

    Annotations
    @Since( "1.5.0" )
  76. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  77. def toString(): String
    Definition Classes
    IsotonicRegressionModelIdentifiable → AnyRef → Any
    Annotations
    @Since( "3.0.0" )
  78. def transform(dataset: Dataset[_]): DataFrame

    Transforms the input dataset.

    Transforms the input dataset.

    Definition Classes
    IsotonicRegressionModelTransformer
    Annotations
    @Since( "2.0.0" )
  79. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  80. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  81. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    IsotonicRegressionModelPipelineStage
    Annotations
    @Since( "1.5.0" )
  82. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  83. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    IsotonicRegressionModelIdentifiable
  84. def validateAndTransformSchema(schema: StructType, fitting: Boolean): StructType

    Validates and transforms input schema.

    Validates and transforms input schema.

    schema

    input schema

    fitting

    whether this is in fitting or prediction

    returns

    output schema

    Attributes
    protected[ml]
    Definition Classes
    IsotonicRegressionBase
  85. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  86. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  87. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  88. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol
  89. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    IsotonicRegressionModelMLWritable
    Annotations
    @Since( "1.6.0" )

Inherited from MLWritable

Inherited from IsotonicRegressionBase

Inherited from HasWeightCol

Inherited from HasPredictionCol

Inherited from HasLabelCol

Inherited from HasFeaturesCol

Inherited from Model[IsotonicRegressionModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters